1
|
Wu J, Wang X, Bian L, Li Z, Jiang X, Shi F, Tang F, Zhang Z. Starch and sucrose metabolism plays an important role in the stem development in Medicago sativa. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24073. [PMID: 38739736 DOI: 10.1071/fp24073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
The forage quality of alfalfa (Medicago sativa ) stems is greater than the leaves. Sucrose hydrolysis provides energy for stem development, with starch being enzymatically converted into sucrose to maintain energy homeostasis. To understand the physiological and molecular networks controlling stem development, morphological characteristics and transcriptome profiles in the stems of two alfalfa cultivars (Zhungeer and WL168) were investigated. Based on transcriptome data, we analysed starch and sugar contents, and enzyme activity related to starch-sugar interconversion. Zhungeer stems were shorter and sturdier than WL168, resulting in significantly higher mechanical strength. Transcriptome analysis showed that starch and sucrose metabolism were significant enriched in the differentially expressed genes of stems development in both cultivars. Genes encoding INV , bglX , HK , TPS and glgC downregulated with the development of stems, while the gene encoding was AMY upregulated. Weighted gene co-expression network analysis revealed that the gene encoding glgC was pivotal in determining the variations in starch and sucrose contents between the two cultivars. Soluble carbohydrate, sucrose, and starch content of WL168 were higher than Zhungeer. Enzyme activities related to sucrose synthesis and hydrolysis (INV, bglX, HK, TPS) showed a downward trend. The change trend of enzyme activity was consistent with gene expression. WL168 stems had higher carbohydrate content than Zhungeer, which accounted for more rapid growth and taller plants. WL168 formed hollow stems were formed during rapid growth, which may be related to the redistribution of carbohydrates in the pith tissue. These results indicated that starch and sucrose metabolism play important roles in the stem development in alfalfa.
Collapse
Affiliation(s)
- Jierui Wu
- Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyu Wang
- Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Bian
- Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhenyi Li
- Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaohong Jiang
- Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiqiang Zhang
- Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China; and Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Pan R, Wang Y, An F, Yao Y, Xue J, Zhu W, Luo X, Lai H, Chen S. Genome-wide identification and characterization of 14-3-3 gene family related to negative regulation of starch accumulation in storage root of Manihot esculenta. FRONTIERS IN PLANT SCIENCE 2023; 14:1184903. [PMID: 37711300 PMCID: PMC10497974 DOI: 10.3389/fpls.2023.1184903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/21/2023] [Indexed: 09/16/2023]
Abstract
The 14-3-3 protein family is a highly conservative member of the acid protein family and plays an important role in regulating a series of important biological activities and various signal transduction pathways. The role of 14-3-3 proteins in regulating starch accumulation still remains largely unknown. To investigate the properties of 14-3-3 proteins, the structures and functions involved in starch accumulation in storage roots were analyzed, and consequently, 16 Me14-3-3 genes were identified. Phylogenetic analysis revealed that Me14-3-3 family proteins are split into two groups (ε and non-ε). All Me14-3-3 proteins contain nine antiparallel α-helices. Me14-3-3s-GFP fusion protein was targeted exclusively to the nuclei and cytoplasm. In the early stage of starch accumulation in the storage root, Me14-3-3 genes were highly expressed in high-starch cultivars, while in the late stage of starch accumulation, Me14-3-3 genes were highly expressed in low-starch cultivars. Me14-3-3 I, II, V, and XVI had relatively high expression levels in the storage roots. The transgenic evidence from Me14-3-3II overexpression in Arabidopsis thaliana and the virus-induced gene silencing (VIGS) in cassava leaves and storage roots suggest that Me14-3-3II is involved in the negative regulation of starch accumulation. This study provides a new insight to understand the molecular mechanisms of starch accumulation linked with Me14-3-3 genes during cassava storage root development.
Collapse
Affiliation(s)
- Ranran Pan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yajie Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture of Biology and Genetic Resources of Tropical Crops, Haikou, China
| | - Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture of Biology and Genetic Resources of Tropical Crops, Haikou, China
| | - Jingjing Xue
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Wenli Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Xiuqin Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Hanggui Lai
- College of Tropical Crops, Hainan University, Haikou, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| |
Collapse
|
3
|
Adly WMRM, Niedbała G, EL-Denary ME, Mohamed MA, Piekutowska M, Wojciechowski T, Abd El-Salam EST, Fouad AS. Somaclonal Variation for Genetic Improvement of Starch Accumulation in Potato ( Solanum tuberosum) Tubers. PLANTS (BASEL, SWITZERLAND) 2023; 12:232. [PMID: 36678944 PMCID: PMC9865851 DOI: 10.3390/plants12020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Starch content is one of the major quality criteria targeted by potato breeding programs. Traditional potato breeding is a laborious duty due to the tetraploid nature and immense heterozygosity of potato genomes. In addition, screening for functional genetic variations in wild relatives is slow and strenuous. Moreover, genetic diversity, which is the raw material for breeding programs, is limited due to vegetative propagation used in the potato industry. Somaclonal variation provides a time-efficient tool to breeders for obtaining genetic variability, which is essential for breeding programs, at a reasonable cost and independent of sophisticated technology. The present investigation aimed to create potato somaclones with an improved potential for starch accumulation. Based on the weight and starch content of tubers, the somaclonal variant Ros 119, among 105 callus-sourced clones, recorded a higher tuberization potential than the parent cv Lady Rosetta in a field experiment. Although this somaclone was similar to the parent in the number of tubers produced, it exhibited tubers with 42 and 61% higher fresh and dry weights, respectively. Additionally, this clone recorded 10 and 75% increases in starch content based on the dry weight and average content per plant, respectively. The enhanced starch accumulation was associated with the upregulation of six starch-synthesis-related genes, namely, the AGPase, GBSS I, SBE I, SBE II, SS II and SS III genes. AGPase affords the glycosyl moieties required for the synthesis of amylose and amylopectin. GBSS is required for amylose elongation, while SBE I, SBE II, SS II and SS III are responsible for amylopectin.
Collapse
Affiliation(s)
- Walaa M. R. M. Adly
- Horticulture Research Institute, Agriculture Research Center, Giza 12619, Egypt
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| | | | - Mahasen A. Mohamed
- Horticulture Research Institute, Agriculture Research Center, Giza 12619, Egypt
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Partyzantów 27, 76-200 Słupsk, Poland
| | - Tomasz Wojciechowski
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| | | | - Ahmed S. Fouad
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
4
|
Characterization of Bioactive Compounds Having Antioxidant and Anti-Inflammatory Effects of Liliaceae Family Flower Petal Extracts. J Funct Biomater 2022; 13:jfb13040284. [PMID: 36547543 PMCID: PMC9780968 DOI: 10.3390/jfb13040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Beneficial natural products utilized in cosmetics formulation and pharmaceutical applications are of enormous interest. Lily (Lilium) serves as an essential edible and medicinal plant species with wide classification. Here, we have performed the screening of various extracts that were prepared from flower petals grown from the bulbs of eight Lilium varieties, with a viewpoint to their applicability as a viable source of natural anti-inflammatory and antioxidants agent. Interestingly, our findings indicated that all ethanol and water extracts exhibited a substantially differential spectrum of antioxidant as well as anti-inflammatory properties. Specifically, Serrano showed a close similarity among ethanol and water extracts among all tested lily petal extracts. Therefore, to obtain a detailed analysis of chemical compounds, liquid chromatography-mass spectroscopy was performed in ethanolic and water extracts of Serrano petals. Together, our preliminary results indicated that lily petals extracts used in this study could serve as a basis to develop a potential new whitening agent with powerful antioxidant and anti-inflammatory properties for medicinal, functional food, and cosmetic applications.
Collapse
|
5
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
6
|
Qu C, Li W, Yang Q, Xia Y, Lu P, Hu M. Metabolic mechanism of nitrogen modified atmosphere storage on delaying quality deterioration of rice grains. Food Chem X 2022; 16:100519. [DOI: 10.1016/j.fochx.2022.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
|
7
|
Production of Amylase by Aspergillus subflavus and Aspergillus fumigatus from flamevine flower (Pyrostegia venusta (Ker-Gawl.) Miers): A Tropical Plant in Bedugul Botanical Garden, Bali, Indonesia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrostegia venusta is known as an ornamental plant with its source of antioxidants, cytotoxic, anti-inflammatory, and anti-HIV compounds. Ephypitic molds are potentially co-existed on the surface of this flower since it contains essential nutrients which support their growth. On the other hand, molds produce several enzymes that might involve flower growth. The presence of ephypitic molds on this flower provides information about its ability to produce amylase. This study successfully isolated molds from August flower (P. venusta) originating from Taman Nasional Bedugul, Bali, Indonesia. The study aimed to isolate potential amylase producer strains and optimize the enzyme production using Solid-State Fermentation (SSF) method. Ten mold isolates belonging to Universitas Negeri Jakarta Culture Collection (UNJCC) were selected according to their amylolytic index (IA) values, morphological identification, and colony count number. Selected strains were optimized for its growth to produce amylase using the SSF method under different temperatures (30, 40, 50°C) and pH (6, 7, 8) with a wheat brain fermentation medium. Results showed that UNJCC F100 (6.53 × 108 CFU/ml) and UNJCC F106 (9.83 x 108 CFU/ml) are the two isolates with the highest IA values of 1.34 ± 0.1 and 1.08 ± 0.12 among all isolates. Based on molecular identification using ITS region, UNJCC F100 and UNJCC F106 were identified as A. subflavus (97% homology) and A. fumigatus (99.52% homology), respectively. This study exhibited that both isolate UNJCC F100 and isolate UNJCC F106 have optimal amylase production conditions at 30°C and pH 6. The enzyme produced was 19.99 U/ml at 30°C and 34.33 U/ml at pH 6 for isolate UNJCC F100, and for isolate UNJCC F106 is 28.55±3.80 U/ml. The two isolates are potentially used for amylase production, referring to the specific environmental condition. However, to generate a higher amount with amylase activity, other external variables such as medium used, inoculum concentration, and fermentation method are important to consider further for a larger application.
Collapse
|
8
|
Pouris J, Levizou E, Karatassiou M, Meletiou-Christou MS, Rhizopoulou S. The Influence of the Partitioning of Sugars, Starch, and Free Proline in Various Organs of Cyclamen graecum on the Biology of the Species and Its Resistance to Abiotic Stressors. PLANTS 2022; 11:plants11091254. [PMID: 35567255 PMCID: PMC9104608 DOI: 10.3390/plants11091254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
Abstract
The geophyte Cyclamen graecum is native to the eastern Mediterranean. Its beautiful flowers with upswept pink petals appear during early autumn, after the summer drought period and before leaf expansion in late autumn. The floral and leaf development alternates with their cessation in early winter and late spring, respectively. Ecophysiological parameters and processes underlining the life-cycle of C. graecum have not previously been published. Seasonal fluctuations of sugars, starch, and free proline have been investigated in tubers, leaves, pedicels, and petals, as well as petal and leaf water status. At the whole plant level, the seasonal co-existence of leaves and flowers is marked by an elevated soluble sugar content, which was gradually reduced as the above-ground plant parts shed. The sugar content of petals and pedicels was lower than that of leaves and tubers. Leaf starch content increased from late autumn to spring and was comparable to that of tubers. The starch content in petals and pedicels was substantially lower than that of tubers and leaves. In tubers, monthly proline accumulation was sustained at relatively constant values. Although the partitioning of proline in various organs did not show a considerable seasonal variation, resulting in an unchanged profile of the trends between tubers, leaves, and flowers, the seasonal differences in proline accumulation were remarkable at the whole plant level. The pronounced petal proline content during the flowering period seems to be associated with the maintenance of floral turgor. Leaf proline content increased with the advance of the growth season. The values of leaf relative water content were sustained fairly constant before the senescence stage, but lower than the typical values of turgid and transpiring leaves. Relationships of the studied parameters with rainfall indicate the responsiveness of C. graecum to water availability in its habitat in the Mediterranean ecosystem.
Collapse
Affiliation(s)
- John Pouris
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Athens, 15784 Athens, Greece; (J.P.); (M.-S.M.-C.)
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece;
| | - Maria Karatassiou
- Laboratory of Rangeland Ecology (PO 286), School of Forestry and Natural Environnent, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria-Sonia Meletiou-Christou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Athens, 15784 Athens, Greece; (J.P.); (M.-S.M.-C.)
| | - Sophia Rhizopoulou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Athens, 15784 Athens, Greece; (J.P.); (M.-S.M.-C.)
- Correspondence: ; Tel.: +30-210-727-4513
| |
Collapse
|
9
|
Tian C, Zhai L, Zhu W, Qi X, Yu Z, Wang H, Chen F, Wang L, Chen S. Characterization of the TCP Gene Family in Chrysanthemum nankingense and the Role of CnTCP4 in Cold Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:936. [PMID: 35406918 PMCID: PMC9002959 DOI: 10.3390/plants11070936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Plant-specific TCP transcription factors play a key role in plant development and stress responses. Chrysanthemum nankingense shows higher cold tolerance than its ornamental polyploid counterpart. However, whether the TCP gene family plays a role in conferring cold tolerance upon C. nankingense remains unknown. Here, we identified 23 CnTCP genes in C. nankingense, systematically analyzed their phylogenetic relationships and synteny with TCPs from other species, and evaluated their expression profiles at low temperature. Phylogenetic analysis of the protein sequences suggested that CnTCP proteins fall into two classes and three clades, with a typical bHLH domain. However, differences between C. nankingense and Arabidopsis in predicted protein structure and binding sites suggested a unique function of CnTCPs in C. nankingense. Furthermore, expression profiles showed that expression of most CnTCPs were downregulated under cold conditions, suggesting their importance in plant responses to cold stress. Notably, expression of miR319 and of its predicted target genes, CnTCP2/4/14, led to fast responses to cold. Overexpression of Arabidopsis CnTCP4 led to hypersensitivity to cold, suggesting that CnTCP4 might play a negative role in C. nankingense responses to cold stress. Our results provide a foundation for future functional genomic studies on this gene family in chrysanthemum.
Collapse
Affiliation(s)
- Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lisheng Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Wenjing Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Xiangyu Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Zhongyu Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.T.); (L.Z.); (W.Z.); (X.Q.); (Z.Y.); (H.W.); (F.C.)
| |
Collapse
|