1
|
Ricci CA, Crysup B, Phillips NR, Ray WC, Santillan MK, Trask AJ, Woerner AE, Goulopoulou S. Machine learning: a new era for cardiovascular pregnancy physiology and cardio-obstetrics research. Am J Physiol Heart Circ Physiol 2024; 327:H417-H432. [PMID: 38847756 PMCID: PMC11442027 DOI: 10.1152/ajpheart.00149.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The maternal cardiovascular system undergoes functional and structural adaptations during pregnancy and postpartum to support increased metabolic demands of offspring and placental growth, labor, and delivery, as well as recovery from childbirth. Thus, pregnancy imposes physiological stress upon the maternal cardiovascular system, and in the absence of an appropriate response it imparts potential risks for cardiovascular complications and adverse outcomes. The proportion of pregnancy-related maternal deaths from cardiovascular events has been steadily increasing, contributing to high rates of maternal mortality. Despite advances in cardiovascular physiology research, there is still no comprehensive understanding of maternal cardiovascular adaptations in healthy pregnancies. Furthermore, current approaches for the prognosis of cardiovascular complications during pregnancy are limited. Machine learning (ML) offers new and effective tools for investigating mechanisms involved in pregnancy-related cardiovascular complications as well as the development of potential therapies. The main goal of this review is to summarize existing research that uses ML to understand mechanisms of cardiovascular physiology during pregnancy and develop prediction models for clinical application in pregnant patients. We also provide an overview of ML platforms that can be used to comprehensively understand cardiovascular adaptations to pregnancy and discuss the interpretability of ML outcomes, the consequences of model bias, and the importance of ethical consideration in ML use.
Collapse
Affiliation(s)
- Contessa A Ricci
- College of Nursing, Washington State University, Spokane, Washington, United States
- IREACH: Institute for Research and Education to Advance Community Health, Washington State University, Seattle, Washington, United States
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States
| | - Benjamin Crysup
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
| | - William C Ray
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - August E Woerner
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science, Fort Worth, Texas, United States
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
2
|
Li G, Li C, Wang C, Wang Z. Suboptimal capability of individual machine learning algorithms in modeling small-scale imbalanced clinical data of local hospital. PLoS One 2024; 19:e0298328. [PMID: 38394317 PMCID: PMC10890755 DOI: 10.1371/journal.pone.0298328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, artificial intelligence (AI) has shown promising applications in various scientific domains, including biochemical analysis research. However, the effectiveness of AI in modeling small-scale, imbalanced datasets remains an open question in such fields. This study explores the capabilities of eight basic AI algorithms, including ridge regression, logistic regression, random forest regression, and others, in modeling a small, imbalanced clinical dataset (total n = 387, class 0 = 27, class 1 = 360) related to the records of the biochemical blood tests from the patients with multiple wasp stings (MWS). Through rigorous evaluation using k-fold cross-validation and comprehensive scoring, we found that none of the models could effectively model the data. Even after fine-tuning the hyperparameters of the best-performing models, the results remained below acceptable thresholds. The study highlights the challenges of applying AI to small-scale datasets with imbalanced groups in biochemical or clinical research and emphasizes the need for novel algorithms tailored to small-scale data. The findings also call for further exploration into techniques such as transfer learning and data augmentation, and they underline the importance of understanding the minimum dataset scale required for effective AI modeling in biochemical contexts.
Collapse
Affiliation(s)
- Gang Li
- Department of ICU, 3201 Hospital, Hanzhong, Shaanxi, China
| | - Chenbi Li
- Department of ICU, 3201 Hospital, Hanzhong, Shaanxi, China
| | - Chengli Wang
- Department of ICU, 3201 Hospital, Hanzhong, Shaanxi, China
| | - Zeheng Wang
- Data61, CSIRO, Clayton, VIC, Australia
- Manufacturing, CSIRO, West Lindfield, NSW, Australia
| |
Collapse
|