1
|
Bdair M, Milhem F, Sawaftah Z, Hamshary H, Abdul‐Hafez HA, Hattab M, Nabresi N, Naseef O. Unraveling Dandy-Walker Malformation: A Comprehensive Literature Review and Case Insight. Clin Case Rep 2025; 13:e70356. [PMID: 40134959 PMCID: PMC11932802 DOI: 10.1002/ccr3.70356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Dandy-Walker spectrum disorder (DWSD) is a congenital abnormality of the brain, consisting typically of partial or complete hypoplasia of the cerebellar vermis, cystic dilation of the fourth ventricle, and enlargement of the posterior fossa. Approximately 1 in 10,000 to 30,000 live births is affected by this typically early-onset neurological condition, which commonly presents with hydrocephalus, irritability, and poor motor coordination. Usually, the diagnosis is confirmed by anatomic features typical of computed tomography or magnetic resonance imaging (MRI). Management has been largely hydrocephalus-oriented, usually by VP shunting and multidisciplinary follow-up for neurological and developmental improvement in the long run. Herein is reported a case with a 5-month-old male presenting with DWSD, which has been documented in this paper along with his clinical presentation, imaging findings, and, most importantly, the response to the cerebrospinal fluid (CSF) diversion following the shunt. This case highlights the importance of early intervention, early comprehensive imaging, and a multidisciplinary approach, including genetic counseling, in optimizing the quality of life and managing complex developmental needs associated with DWSD.
Collapse
Affiliation(s)
- Mohammad Bdair
- Department of MedicineAn Najah National UniversityNablusPalestine
| | - Fathi Milhem
- Department of MedicineAn Najah National UniversityNablusPalestine
| | - Zaid Sawaftah
- Department of MedicineAn Najah National UniversityNablusPalestine
| | - Husam Hamshary
- Department of MedicineAn Najah National UniversityNablusPalestine
| | | | - Moath Hattab
- Department of MedicineAn Najah National UniversityNablusPalestine
| | - Noor Nabresi
- Pediatric DepartmentDr. Thabet Thabet HospitalTulkarmPalestine
| | - Omar Naseef
- Department of RadiologyAn Najah National University HospitalNablusPalestine
| |
Collapse
|
2
|
Takeoka E, Carlson AA, Madan N, Azimirad A, Mahmoud T, Kitano R, Akiyama S, Yun HJ, Tucker R, Im K, O'Tierney-Ginn P, Tarui T. Impact of high maternal body mass index on fetal cerebral cortical and cerebellar volumes. J Perinat Med 2025; 53:376-386. [PMID: 39754513 DOI: 10.1515/jpm-2024-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES Maternal obesity increases a child's risk of neurodevelopmental impairment. However, little is known about the impact of maternal obesity on fetal brain development. METHODS We prospectively recruited 20 healthy pregnant women across the range of pre-pregnancy or first-trimester body mass index (BMI) and performed fetal brain magnetic resonance imaging (MRI) of their healthy singleton fetuses. We examined correlations between early pregnancy maternal BMI and regional brain volume of living fetuses using volumetric MRI analysis. RESULTS Of 20 fetuses, there were 8 males and 12 females (median gestational age at MRI acquisition was 24.3 weeks, range: 19.7-33.3 weeks, median maternal age was 33.3 years, range: 22.0-37.4 years). There were no significant differences in clinical demographics between overweight (OW, 25≤BMI<30)/obese (OB, BMI≥30 kg/m2) (n=12) and normal BMI (18.5≤BMI<25) (n=8) groups. Fetuses in the OW/OB group had significantly larger left cortical plate (p=0.0003), right cortical plate (p=0.0002), and whole cerebellum (p=0.049) compared to the normal BMI group. In the OW/OB BMI group, cortical plate volume was larger relative to other brain regions after 28 weeks. CONCLUSIONS This pilot study supports the concept that maternal obesity impacts fetal brain volume, detectable via MRI in living fetuses using quantitative analysis.
Collapse
Affiliation(s)
- Emiko Takeoka
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Neonatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - April A Carlson
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Neel Madan
- Department of Radiology, Mass General Brigham, Boston, MA, USA
| | - Afshin Azimirad
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, USA
| | - Taysir Mahmoud
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
| | - Rie Kitano
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Obstetrics and Gynecology, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaragi, Japan
| | - Shizuko Akiyama
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Richard Tucker
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Kiho Im
- Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | | | - Tomo Tarui
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, USA
- Pediatric Neurology, Hasbro Children's, Providence, RI, USA
| |
Collapse
|
3
|
The PLOS ONE Staff. Correction: Regional brain development in fetuses with Dandy-Walker malformation: A volumetric fetal brain magnetic resonance imaging study. PLoS One 2024; 19:e0310149. [PMID: 39231119 PMCID: PMC11373830 DOI: 10.1371/journal.pone.0310149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0263535.].
Collapse
|
4
|
Tarui T, Gimovsky AC, Madan N. Fetal neuroimaging applications for diagnosis and counseling of brain anomalies: Current practice and future diagnostic strategies. Semin Fetal Neonatal Med 2024; 29:101525. [PMID: 38632010 PMCID: PMC11156536 DOI: 10.1016/j.siny.2024.101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Advances in fetal brain neuroimaging, especially fetal neurosonography and brain magnetic resonance imaging (MRI), allow safe and accurate anatomical assessments of fetal brain structures that serve as a foundation for prenatal diagnosis and counseling regarding fetal brain anomalies. Fetal neurosonography strategically assesses fetal brain anomalies suspected by screening ultrasound. Fetal brain MRI has unique technological features that overcome the anatomical limits of smaller fetal brain size and the unpredictable variable of intrauterine motion artifact. Recent studies of fetal brain MRI provide evidence of improved diagnostic and prognostic accuracy, beginning with prenatal diagnosis. Despite technological advances over the last several decades, the combined use of different qualitative structural biomarkers has limitations in providing an accurate prognosis. Quantitative analyses of fetal brain MRIs offer measurable imaging biomarkers that will more accurately associate with clinical outcomes. First-trimester ultrasound opens new opportunities for risk assessment and fetal brain anomaly diagnosis at the earliest time in pregnancy. This review includes a case vignette to illustrate how fetal brain MRI results interpreted by the fetal neurologist can improve diagnostic perspectives. The strength and limitations of conventional ultrasound and fetal brain MRI will be compared with recent research advances in quantitative methods to better correlate fetal neuroimaging biomarkers of neuropathology to predict functional childhood deficits. Discussion of these fetal sonogram and brain MRI advances will highlight the need for further interdisciplinary collaboration using complementary skills to continue improving clinical decision-making following precision medicine principles.
Collapse
Affiliation(s)
- Tomo Tarui
- Pediatric Neurology, Pediatrics, Hasbro Children's Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Alexis C Gimovsky
- Maternal Fetal Medicine, Obstetrics and Gynecology, Women & Infants Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Neel Madan
- Neuroradiology, Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Tarui T, Madan N, Graham G, Kitano R, Akiyama S, Takeoka E, Reid S, Yun HJ, Craig A, Samura O, Grant E, Im K. Comprehensive quantitative analyses of fetal magnetic resonance imaging in isolated cerebral ventriculomegaly. Neuroimage Clin 2023; 37:103357. [PMID: 36878148 PMCID: PMC9999203 DOI: 10.1016/j.nicl.2023.103357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Isolated cerebral ventriculomegaly (IVM) is the most common prenatally diagnosed brain anomaly occurs in 0.2-1 % of pregnancies. However, knowledge of fetal brain development in IVM is limited. There is no prenatal predictor for IVM to estimate individual risk of neurodevelopmental disability occurs in 10 % of children. To characterize brain development in fetuses with IVM and delineate their individual neuroanatomical variances, we performed comprehensive post-acquisition quantitative analysis of fetal magnetic resonance imaging (MRI). In volumetric analysis, brain MRI of fetuses with IVM (n = 20, 27.0 ± 4.6 weeks of gestation, mean ± SD) had revealed significantly increased volume in the whole brain, cortical plate, subcortical parenchyma, and cerebrum compared to the typically developing fetuses (controls, n = 28, 26.3 ± 5.0). In the cerebral sulcal developmental pattern analysis, fetuses with IVM had altered sulcal positional (both hemispheres) development and combined features of sulcal positional, depth, basin area, in both hemispheres compared to the controls. When comparing distribution of similarity index of individual fetuses, IVM group had shifted toward to lower values compared to the control. About 30 % of fetuses with IVM had no overlap with the distribution of control fetuses. This proof-of-concept study shows that quantitative analysis of fetal MRI can detect emerging subtle neuroanatomical abnormalities in fetuses with IVM and their individual variations.
Collapse
Affiliation(s)
- Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, USA; Pediatric Neurology, Hasbro Children's Hospital, Providence, USA.
| | - Neel Madan
- Radiology, Tufts Medical Center, Boston, USA
| | - George Graham
- Obstetrics and Gynecology, South Shore Hospital, South Weymouth, USA
| | - Rie Kitano
- Mother Infant Research Institute, Tufts Medical Center, Boston, USA
| | - Shizuko Akiyama
- Mother Infant Research Institute, Tufts Medical Center, Boston, USA
| | - Emiko Takeoka
- Mother Infant Research Institute, Tufts Medical Center, Boston, USA
| | - Sophie Reid
- Mother Infant Research Institute, Tufts Medical Center, Boston, USA
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, USA
| | - Alexa Craig
- Pediatric Neurology, Maine Medical Center, Portland, USA
| | - Osamu Samura
- Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | - Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, USA
| | - Kiho Im
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, USA.
| |
Collapse
|
6
|
Scelsa B. Fetal Neurology: From Prenatal Counseling to Postnatal Follow-Up. Diagnostics (Basel) 2022; 12:diagnostics12123083. [PMID: 36553090 PMCID: PMC9776544 DOI: 10.3390/diagnostics12123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Brain abnormalities detected in fetal life are being increasingly recognized. Child neurologists are often involved in fetal consultations, and specific fetal neurology training has been implemented in many countries. Pediatric neurologists are asked to examine the data available and to contribute to the definition of the long-term outcomes. Ventriculomegaly, posterior fossa malformations, and agenesis/dysgenesis of corpus callosum are among the most common reasons for antenatal neurological consultations. Fetuses with central nervous system and extra-CNS anomalies should ideally be managed in secondary/tertiary hospitals where obstetricians who are experts in fetal medicine and pediatric specialists are available. Obstetricians play a critical role in screening, performing detailed neurosonography, and referring to other specialists for additional investigations. Clinical geneticists are frequently asked to propose diagnostic tests and counsel complex fetal malformations whose phenotypes may differ from those during postnatal life. Advances in fetal MRI and genetic investigations can support the specialists involved in counseling. Nevertheless, data interpretation can be challenging, and it requires a high level of expertise in a multidisciplinary setting. Postnatally, child neurologists should be part of an integrated multidisciplinary follow-up, together with neonatologists and pediatricians. The neurodevelopmental outcomes should be assessed at least up to school age. Children should be evaluated with formal tests of their gross motor, cognitive, language, fine motor/visuo-perceptual skills, and their behavior. In this perspective, fetal neurology can be regarded as the beginning of a long journey which continues with a prolonged, structured follow-up, support to the families, and transition to adult life. A review of the most common conditions is presented, along with the long-term outcomes and a proposal of the neurodevelopmental follow-up of children with CNS malformation which are diagnosed in uterus.
Collapse
Affiliation(s)
- Barbara Scelsa
- Department of Pediatric Neurology and Psychiatry, V. Buzzi Children's Hospital, ASST-FBF-Sacco, via Castelvetro 32, 20154 Milan, Italy
| |
Collapse
|