1
|
Yoshihara T, Dobashi S, Naito H. Effects of preconditioning with heat stress on acute exercise-induced intracellular signaling in male rat gastrocnemius muscle. Physiol Rep 2024; 12:e15913. [PMID: 38185480 PMCID: PMC10771927 DOI: 10.14814/phy2.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Heat stress (HS) induces Akt/mTOR phosphorylation and FoxO3a signaling; however, whether a prior increase in heat shock protein 72 (HSP72) expression affects intracellular signaling following eccentric exercise remains unclear. We analyzed the effects of HS pretreatment on intramuscular signaling in response to acute exercise in 10-week-old male Wistar rats (n = 24). One leg of each rat was exposed to HS and the other served as an internal control (CT). Post-HS, rats were either rested or subjected to downhill treadmill running. Intramuscular signaling responses in the red and white regions of the gastrocnemius muscle were analyzed before, immediately after, or 1 h after exercise (n = 8/group). HS significantly increased HSP72 levels in both deep red and superficial white regions. Although HS did not affect exercise-induced mTOR signaling (S6K1/ERK) responses in the red region, mTOR phosphorylation in the white region was significantly higher in CT legs than in HS legs after exercise. Thr308 phosphorylation of Akt showed region-specific alteration with a decrease in the red region and an increase in the white region immediately after downhill running. Overall, a prior increase in HSP72 expression elicits fiber type-specific changes in exercise-induced Akt and mTOR phosphorylation in rat gastrocnemius muscle.
Collapse
Affiliation(s)
| | - Shohei Dobashi
- Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
- Institute of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| | - Hisashi Naito
- Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
| |
Collapse
|
2
|
Hitrec T, Petit C, Cryer E, Muir C, Tal N, Fustin JM, Hughes AT, Piggins HD. Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock. iScience 2023; 26:106002. [PMID: 36866044 PMCID: PMC9971895 DOI: 10.1016/j.isci.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.
Collapse
Affiliation(s)
- Timna Hitrec
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Cheryl Petit
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emily Cryer
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlotte Muir
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Natalie Tal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Michel Fustin
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alun T.L. Hughes
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK,Corresponding author
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK,School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,Corresponding author
| |
Collapse
|
3
|
Menek MY, Budak M. Effect of exercises according to the circadian rhythm in type 2 diabetes: Parallel-group, single-blind, crossover study. Nutr Metab Cardiovasc Dis 2022; 32:1742-1752. [PMID: 35606229 DOI: 10.1016/j.numecd.2022.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM To evaluate the effectiveness of structured exercise appropriate the circadian rhythm in terms of blood sample test (BST), functionality and quality of life (QoL) in individuals with type 2 diabetes. METHODS AND RESULTS This was a parallel-group, single-blind, crossover study. Thirty individuals with type 2 diabetes aged 35-65 years were enrolled in the study and allocated into 2 groups as the Morning Chronotype (MC) Group (n = 15) and the Evening Chronotype (EC) Group (n = 15) using Morningness-Eveningness Questionnaire which was used to determine the chronotypes. Participants were evaluated in terms of BST, functionality and QoL at the beginning of the study (T0), at 6 (T1), 12 (T2), and 18 (T3) weeks after the study started. A structured exercise program for 3 days a week over 6 weeks was applied in accordance with the chronotypes (T1-T2) and cross-controlled for the chronotypes (T2-T3). Significant differences were found in favor of the exercise given at the appropriate time for the chronotype in all parameters in both groups within groups (T0-T1-T2-T3) (p < 0.05). In the time∗group interactions, exercise in accordance with the appropriate chronotype in both groups provided the highest statistical improvement in all parameters (p < 0.05). CONCLUSION It was concluded that structured exercise performed at the appropriate time for chronotype improves HbA1c, fasting blood glucose, HDL-LDL cholesterol, triglyceride, total cholesterol, functionality and quality of life in type 2 diabetes. This variation in blood values was observed to reflect the quantitative effects of exercise administered according to the circadian rhythm in individuals with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov (NCT04427488). The protocol of the study was registered at ClinicalTrials.gov (NCT04427488).
Collapse
Affiliation(s)
- Merve Yilmaz Menek
- Department of Physiotherapy and Rehabilitation, Faculty of Health Science, Istanbul Medipol University, Istanbul, Turkey.
| | - Miray Budak
- Department of Ergotherapy, Faculty of Health Science, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|