1
|
Kosovsky GY, Glazko GV, Skobel OI. Bos taurus and Bison bison conservative retrotransposon recombination products. Front Vet Sci 2025; 12:1516731. [PMID: 40370818 PMCID: PMC12075945 DOI: 10.3389/fvets.2025.1516731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Without identifying and studying the genomic characteristics associated with domestication, managing farm animal genetic resources becomes overwhelmingly difficult. Accumulated data confirm that mobile genetic elements participate in the domestication process and, in particular, generate widely abundant microRNAs. Methods The recombination products were compared in silico between the long interspersed nuclear element (LINE) and the endogenous retrovirus (ERV), forming the LINE/ERV/LINE sequence, located in a closely linked conserved block of 12 genes, as well as the microRNAs formed by these recombination products in domesticated-wild pairs of mammals. For this comparison, the reference genomes of domesticated cattle (Bos taurus) and its closely related wild species counterpart, bison (Bison bison), were used. Results It was found that the above-noted highly conserved recombination products (with more than 81.5% identity) were present in the corresponding block of 12 genes in bison. These recombination products served as sources of 51 microRNAs in bison and 129 microRNAs in cattle, including 50 microRNAs that were similar in both species. A total of 79 microRNAs were found only in cattle trinomial recombination products, with 98% belonging to the mir-30 family, including the cattle-specific bta-miR-30a-5p and bta-miR-30e-5p. The mir-30 family is closely associated with biological processes influencing the quantity and quality of agricultural products. Conclusion Trinomial retrotransposon recombination products were fixed in both the cattle genome and the genome of its closely related wild species, the bison. It was found that these products may be involved in the response to intensive artificial selection and the domestication process since interspecific differentiation of microRNAs is associated with regulatory networks that have a significant impact on the formation of economically important traits.
Collapse
Affiliation(s)
- Gleb Yu. Kosovsky
- Department of Biotechnology, Afanas‘ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Moscow, Russia
| | - Galina V. Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olga I. Skobel
- Department of Biotechnology, Afanas‘ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Moscow, Russia
| |
Collapse
|
2
|
Rostamzadeh Mahdabi E, Tian R, Tian J, Asadollahpour Nanaie H, Wang X, Zhao M, Li H, Dalai B, Sai Y, Guo W, Li Y, Zhang H, Esmailizadeh A. Uncovering genomic diversity and signatures of selection in red Angus × Chinese red steppe crossbred cattle population. Sci Rep 2025; 15:12977. [PMID: 40234714 PMCID: PMC12000499 DOI: 10.1038/s41598-025-98346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
Crossbreeding is a cornerstone of modern livestock improvement, combining desirable traits to enhance productivity and environmental resilience. This study conducts the first comprehensive genomic analysis of Red Angus × Chinese Red Steppe (RACS) crossbred cattle, evaluating their genetic architecture, diversity, and selection signatures relative to founder breeds (Red Angus and Chinese Red Steppe) and global populations. A total of 119 cattle, comprising 104 RACS crossbreds and 15 Chinese Red Steppes cattle, were genotyped using the GGP Bovine 100k SNP array. Additionally, the public available genotypic data generated using the BovineSNP50 chip from 550 animals across eight beef breeds (Angus, Hereford, Limousin, Charolais, Mongolian, Shorthorn, Red Angus, and Simmental) and one dairy breed (Holstein) were incorporated into the analysis. We aimed to (1) define the population structure of RACS cattle, (2) quantify their genomic diversity and inbreeding levels, and (3) pinpoint regions under selection linked to adaptive and economic traits. We employed runs of homozygosity (ROH) and population differentiation (Fst) analyses to detect selection signals. The results revealed that the crossbred (RACS), Angus, and Red Angus breeds exhibited similar clustering patterns in principal component analysis (PCA), but the crossbred population showed the highest nucleotide diversity and lowest inbreeding coefficients compared to other breeds. Notably, candidate regions associated with immune response, cold adaptation, and carcass traits were identified within the RACS population. These findings enhance our understanding of the genetic makeup of crossbred beef cattle and highlight their potential for genetic improvement, informing future selection and breeding strategies aimed at optimizing beef production in challenging environments.
Collapse
Affiliation(s)
- Elaheh Rostamzadeh Mahdabi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran
| | - Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Jing Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | | | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Baolige Dalai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yin Sai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Wenhua Guo
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hao Zhang
- Forestry and Grassland Bureau of Siziwang Banner, Wulanchabu, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran.
| |
Collapse
|
3
|
Ahmed Z, Xiang W, Wang F, Nawaz M, Kuthu ZH, Lei C, Xu D. Whole-genome resequencing deciphers patterns of genetic diversity, phylogeny, and evolutionary dynamics in Kashmir cattle. Anim Genet 2024; 55:511-526. [PMID: 38726735 DOI: 10.1111/age.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 07/04/2024]
Abstract
Kashmir cattle, which were kept by local pastoralists for centuries, are exceptionally resilient and adaptive to harsh environments. Despite its significance, the genomic characteristics of this cattle breed remain elusive. This study utilized whole genome sequences of Kashmir cattle (n = 20; newly sequenced) alongside published whole genomes of 32 distinct breeds and seven core cattle populations (n = 135). The analysis identified ~25.87 million biallelic single nucleotide polymorphisms in Kashmir cattle, predominantly in intergenic and intron regions. Population structure analyses revealed distinct clustering patterns of Kashmir cattle with proximity to the South Asian, African and Chinese indicine cattle populations. Genetic diversity analysis of Kashmir cattle demonstrated lower inbreeding and greater nucleotide diversity than analyzed global breeds. Homozygosity runs indicated less consanguineous mating in Kashmir cattle compared with European taurine breeds. Furthermore, six selection sweep detection methods were used within Kashmir cattle and other cattle populations to identify genes associated with vital traits, including immunity (BOLA-DQA5, BOLA-DQB, TNFAIP8L, FCRL4, AOAH, HIF1AN, FBXL3, MPEG1, CDC40, etc.), reproduction (GOLGA4, BRWD1, OSBP2, LEO1 ADCY5, etc.), growth (ADPRHL1, NRG2, TCF12, TMOD4, GBP4, IGF2, RSPO3, SCD, etc.), milk composition (MRPS30 and CSF1) and high-altitude adaptation (EDNRA, ITPR2, AGBL4 and SCG3). These findings provide essential genetic insights into the characteristics and establish the foundation for the scientific conservation and utilization of Kashmir cattle breed.
Collapse
Affiliation(s)
- Zulfiqar Ahmed
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, China
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Weixuan Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mohsin Nawaz
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Zulfiqar Hussan Kuthu
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
4
|
da Silva WC, da Silva JAR, Martorano LG, da Silva ÉBR, Belo TS, Neves KAL, Camargo Júnior RNC, de Araújo CV, Vilela LGP, Joaquim LA, de Carvalho Rodrigues TCG, Lourenço-Júnior JDB. Characterization of the Temperament and Reactivity of Nelore Cattle ( Bos indicus) Associated with Behavior Scores during Corral Management in the Humid Tropics. Animals (Basel) 2024; 14:1769. [PMID: 38929388 PMCID: PMC11200586 DOI: 10.3390/ani14121769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The evaluation of the reactivity and distress of cattle during corral management, by means of subjective scores, aims at the standardization of behavioral indicators, through non-invasive methods, in addition to enabling the development of more appropriate management practices, thus promoting the comfort and well-being of these animals. Therefore, in this study, we aimed to characterize the temperament and distress of cattle managed in a corral using behavioral indicators during the rainiest period. For this, the experiment was conducted on a property located in the municipality of Mojuí dos Campos, during the rainiest quarter (February-April). Thus, 30 male cattle, not castrated, approximately 29 months of age, clinically healthy, and weighing 310 + 20 kg, were divided into three rearing systems: silvopastoral (SP), traditional (SS), and integrated (SI) systems. There were 10 animals per system. Physiological parameters were collected to evaluate rectal temperature (RT) and respiratory rate (RR), as well as body surface temperature (BST), through thermal windows (head and flank infrared temperature and rump infrared temperature). To evaluate temperament and reactivity, scores indicative of corral behavior were used, namely escape speed (ES), tension score (SS_1), tension score (SS_2), reactivity scale (RS), movement score (MS), and temperament scale (TS). The results showed that there was a thermal amplitude of 5.9 °C on average and 8.6 °C at maximum when comparing the structure of the corral and the trees. In addition, the comparisons between the production systems for the behavioral variables did not differ at the 5% significance level, except for ES, where the traditional system differed from the integrated system and the silvopastoral system, showing intermediate average values for both. In addition, there was a positive correlation between the variables RT and RR (r = 0.72; p < 0.01), RR and SS_2 (r = 0.38; p = 0.04), flank infrared temperature and MS (r = 0.47; p = 0.01), rump infrared temperature and RS (r = 0.37; p = 0.04), SS_1 and RS (r = 0.41; p = 0.02), SS_1 and SS_2 (r = 0.39; p = 0.03), RS and SS_2 (r = 0.58; p = 0.00), RS and MS (r = 0.50; p = 0.01), RS and TS (r = 0.61; p = 0.00), SS_2 and MS (r = 0.51; p = 0.00), SS_2 and TS (r = 0.47; p = 0.01), and MS and TS (r = 0.44; p = 0.02), and a negative correlation between ES and TS (r = -0.42; p = 0.02). The rainy season had a major influence on the evaluation of temperature and distress levels during handling in the corral, as evidenced by the association between physiological and behavioral parameters.
Collapse
Affiliation(s)
- Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (L.A.J.); (T.C.G.d.C.R.); (J.d.B.L.-J.)
| | | | | | - Éder Bruno Rebelo da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (L.A.J.); (T.C.G.d.C.R.); (J.d.B.L.-J.)
| | - Tatiane Silva Belo
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarem 68010-200, Brazil;
| | - Kedson Alessandri Lobo Neves
- Institute of Engineering and Geosciences, Federal University of Western Pará (UFOPA), Santarem 68040-255, Brazil;
| | - Raimundo Nonato Colares Camargo Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (L.A.J.); (T.C.G.d.C.R.); (J.d.B.L.-J.)
| | - Cláudio Vieira de Araújo
- Institute of Animal Science, Federal University of Western Pará (UFOPA), Santarem 68040-255, Brazil;
| | | | - Leonel António Joaquim
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (L.A.J.); (T.C.G.d.C.R.); (J.d.B.L.-J.)
| | - Thomaz Cyro Guimarães de Carvalho Rodrigues
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (L.A.J.); (T.C.G.d.C.R.); (J.d.B.L.-J.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (L.A.J.); (T.C.G.d.C.R.); (J.d.B.L.-J.)
| |
Collapse
|
5
|
Rajawat D, Panigrahi M, Nayak SS, Bhushan B, Mishra BP, Dutt T. Dissecting the genomic regions of selection on the X chromosome in different cattle breeds. 3 Biotech 2024; 14:50. [PMID: 38268984 PMCID: PMC10803714 DOI: 10.1007/s13205-023-03905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Mammalian X and Y chromosomes independently evolved from various autosomes approximately 300 million years ago (MYA). To fully understand the relationship between genomic composition and phenotypic diversity arising due to the course of evolution, we have scanned regions of selection signatures on the X chromosome in different cattle breeds. In this study, we have prepared the datasets of 184 individuals of different cattle breeds and explored the complete X chromosome by utilizing four within-population and two between-population methods. There were 23, 25, 30, 17, 17, and 12 outlier regions identified in Tajima's D, CLR, iHS, ROH, FST, and XP-EHH. Bioinformatics analysis showed that these regions harbor important candidate genes like AKAP4 for reproduction in Brown Swiss, MBTS2 for production traits in Brown Swiss and Guernsey, CXCR3 and CITED1 for health traits in Jersey and Nelore, and BMX and CD40LG for regulation of X chromosome inactivation in Nelore and Gir. We identified genes shared among multiple methods, such as TRNAC-GCA and IL1RAPL1, which appeared in Tajima's D, ROH, and iHS analyses. The gene TRNAW-CCA was found in ROH, CLR and iHS analyses. The X chromosome exhibits a distinctive interaction between demographic factors and genetic variations, and these findings may provide new insight into the X-linked selection in different cattle breeds.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - B. P. Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
6
|
Wu F, Chen Z, Zhang Z, Wang Z, Zhang Z, Wang Q, Pan Y. The Role of SOCS3 in Regulating Meat Quality in Jinhua Pigs. Int J Mol Sci 2023; 24:10593. [PMID: 37445769 DOI: 10.3390/ijms241310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Meat quality is an important economic trait that influences the development of the pig industry. Skeletal muscle development and glycolytic potential (GP) are two crucial aspects that significantly impact meat quality. It has been reported that abnormal skeletal muscle development and high glycogen content results in low meat quality. However, the genetic mechanisms underlying these factors are still unclear. Compared with intensive pig breeds, Chinese indigenous pig breeds, such as the Jinhua pig, express superior meat quality characteristics. The differences in the meat quality traits between Jinhua and intensive pig breeds make them suitable for uncovering the genetic mechanisms that regulate meat quality traits. In this study, the Jinhua pig breed and five intensive pig breeds, including Duroc, Landrace, Yorkshire, Berkshire, and Pietrain pig breeds, were selected as experimental materials. First, the FST and XP-EHH methods were used to screen the selective signatures on the genome in the Jinhua population. Then, combined with RNA-Seq data, the study further confirmed that SOCS3 could be a key candidate gene that influences meat quality by mediating myoblast proliferation and glycometabolism because of the down-regulated expression of SOCS3 in Jinhua pigs compared with Landrace pigs. Finally, through SOCS3 knockout (KO) and overexpression (OE) experiments in mouse C2C12 cells, the results showed that SOCS3 regulated the cell proliferation of myoblasts. Moreover, SOCS3 is involved in regulating glucose uptake by the IRS1/PI3K/AKT signaling pathway. Overall, these findings provide a basis for the genetic improvement of meat quality traits in the pig industry.
Collapse
Affiliation(s)
- Fen Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zitao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
7
|
Ahmad SF, Singh A, Gangwar M, Kumar S, Dutt T, Kumar A. Haplotype-based association study of production and reproduction traits in multigenerational Vrindavani population. Gene 2023; 867:147365. [PMID: 36918047 DOI: 10.1016/j.gene.2023.147365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Haplotype-based association analysis promises to reveal important information regarding the effect of genetic variants on economic traits of interest. The present study aimed to evaluate the haplotype structure of Vrindavani cattle and explore the association of haplotypes with (re)production traits of economic interest. Genotyping array data of medium density (Bovine50KSNP BeadChip) on 96 randomly selected Vrindavani cows was used in the present study. Genotypes were called in GenomeStudio program while quality control was undertaken in PLINK using standard thresholds. The phenotypic traits used in the present study included age at first calving, dry days, lactation length, peak yield, total lactation milk yield, inter-calving period and service period. The haplotype structure of Vrindavani population was assessed, using a sliding window of 20 SNP with a shift of 5 SNPs at a time, in terms of the size of haplotype blocks regarding their length (in Kb) and frequency in chromosome-wise fashion. Haplotype blocks were assessed for possible association with important production and reproduction traits across three lactation cycles in Vrindavani cattle population. The first ten principal components were included in the model for haplotype-based association analysis to correct for stratification effects of assessed individuals. Multiple haplotypes were found to be associated with age at first calving, total lactation milk yield, peak yield, dry days, inter-calving period and service period. Various candidate genes were found to overlap haplotypes that were significantly associated with age at first calving (CDH18, MARCHF11, MYO10, FBXL7), total lactation milk yield (TGF, PDE1A, and COL8A1), peak yield (PPARGC1A, RCAN1, KCNE1, SMIM34 and MRPS6), dry days (CPNE4, ACAD11 and MRAS), inter-calving period (ABCG5, ABCG8 and COX7A2L) and service period (FOXL2 and PIK3CB). The putative candidate genes overlapping the significantly associated haplotypes revealed important pathways affecting the production and reproduction performance of animals. The identified genes and pathways may serve as good candidate markers to select animals for improved production and reproduction performance in future generations.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Akansha Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Munish Gangwar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subodh Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Amit Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
8
|
The Important Role of m6A-Modified circRNAs in the Differentiation of Intramuscular Adipocytes in Goats Based on MeRIP Sequencing Analysis. Int J Mol Sci 2023; 24:ijms24054817. [PMID: 36902246 PMCID: PMC10003525 DOI: 10.3390/ijms24054817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Intramuscular fat contributes to the improvement of goat meat quality. N6-Methyladenosine (m6A)-modified circular RNAs play important roles in adipocyte differentiation and metabolism. However, the mechanisms by which m6A modifies circRNA before and after differentiation of goat intramuscular adipocytes remain poorly understood. Here, we performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and circRNA sequencing (circRNA-seq) to determine the distinctions in m6A-methylated circRNAs during goat adipocyte differentiation. The profile of m6A-circRNA showed a total of 427 m6A peaks within 403 circRNAs in the intramuscular preadipocytes group, and 428 peaks within 401 circRNAs in the mature adipocytes group. Compared with the intramuscular preadipocytes group, 75 peaks within 75 circRNAs were significantly different in the mature adipocytes group. Furthermore, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of intramuscular preadipocytes and mature adipocytes showed that the differentially m6A-modified circRNAs were enriched in the PKG signaling pathway, endocrine and other factor-regulated calcium reabsorption, lysine degradation, etc. m6A-circRNA-miRNA-mRNA interaction networks predicted the potential m6A-circRNA regulation mechanism in different goat adipocytes. Our results indicate that there is a complicated regulatory relationship between the 12 upregulated and 7 downregulated m6A-circRNAs through 14 and 11 miRNA mediated pathways, respectively. In addition, co-analysis revealed a positive association between m6A abundance and levels of circRNA expression, such as expression levels of circRNA_0873 and circRNA_1161, which showed that m6A may play a vital role in modulating circRNA expression during goat adipocyte differentiation. These results would provide novel information for elucidating the biological functions and regulatory characteristics of m6A-circRNAs in intramuscular adipocyte differentiation and could be helpful for further molecular breeding to improve meat quality in goats.
Collapse
|
9
|
Sánchez-Ramos R, Trujano-Chavez MZ, Gallegos-Sánchez J, Becerril-Pérez CM, Cadena-Villegas S, Cortez-Romero C. Detection of Candidate Genes Associated with Fecundity through Genome-Wide Selection Signatures of Katahdin Ewes. Animals (Basel) 2023; 13:ani13020272. [PMID: 36670812 PMCID: PMC9854690 DOI: 10.3390/ani13020272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
One of the strategies to genetically improve reproductive traits, despite their low inheritability, has been the identification of candidate genes. Therefore, the objective of this study was to detect candidate genes associated with fecundity through the fixation index (FST) and runs of homozygosity (ROH) of selection signatures in Katahdin ewes. Productive and reproductive records from three years were used and the genotypes (OvineSNP50K) of 48 Katahdin ewes. Two groups of ewes were identified to carry out the genetic comparison: with high fecundity (1.3 ± 0.03) and with low fecundity (1.1 ± 0.06). This study shows for the first time evidence of the influence of the CNOT11, GLUD1, GRID1, MAPK8, and CCL28 genes in the fecundity of Katahdin ewes; in addition, new candidate genes were detected for fecundity that were not reported previously in ewes but that were detected for other species: ANK2 (sow), ARHGAP22 (cow and buffalo cow), GHITM (cow), HERC6 (cow), DPF2 (cow), and TRNAC-GCA (buffalo cow, bull). These new candidate genes in ewes seem to have a high expression in reproduction. Therefore, future studies are needed focused on describing the physiological basis of changes in the reproductive behavior influenced by these genes.
Collapse
Affiliation(s)
- Reyna Sánchez-Ramos
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
| | | | - Jaime Gallegos-Sánchez
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
| | - Carlos Miguel Becerril-Pérez
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
- Agroecosistemas Tropicales, Colegio de Postgraduados, Campus Veracruz, Carretera Xalapa-Veracruz Km. 88.5, Manlio Favio Altamirano, Veracruz 91690, Mexico
| | - Said Cadena-Villegas
- Producción Agroalimentaria en Trópico, Colegio de Postgraduados, Campus Tabasco, Periférico Carlos A. Molina, Ranchería Rio Seco y Montaña, Heroica Cárdenas 86500, Mexico
| | - César Cortez-Romero
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
- Innovación en Manejo de Recursos Naturales, Colegio de Postgraduados, Campus San Luis Potosí, Agustín de Iturbide No. 73, Salinas de Hidalgo, San Luis Potosí 78622, Mexico
- Correspondence: ; Tel.: +52-5959-520-200 (ext. 4000)
| |
Collapse
|
10
|
Abondio P, Cilli E, Luiselli D. Inferring Signatures of Positive Selection in Whole-Genome Sequencing Data: An Overview of Haplotype-Based Methods. Genes (Basel) 2022; 13:genes13050926. [PMID: 35627311 PMCID: PMC9141518 DOI: 10.3390/genes13050926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Signatures of positive selection in the genome are a characteristic mark of adaptation that can reveal an ongoing, recent, or ancient response to environmental change throughout the evolution of a population. New sources of food, climate conditions, and exposure to pathogens are only some of the possible sources of selective pressure, and the rise of advantageous genetic variants is a crucial determinant of survival and reproduction. In this context, the ability to detect these signatures of selection may pinpoint genetic variants that are responsible for a significant change in gene regulation, gene expression, or protein synthesis, structure, and function. This review focuses on statistical methods that take advantage of linkage disequilibrium and haplotype determination to reveal signatures of positive selection in whole-genome sequencing data, showing that they emerge from different descriptions of the same underlying event. Moreover, considerations are provided around the application of these statistics to different species, their suitability for ancient DNA, and the usefulness of discovering variants under selection for biomedicine and public health in an evolutionary medicine framework.
Collapse
Affiliation(s)
- Paolo Abondio
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
- Laboratory of Molecular Anthropology and Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
- Correspondence:
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), Viale Adriatico 1/N, 61032 Fano, Italy
| |
Collapse
|