1
|
Korsun O, Renvall H, Nurminen J, Mäkelä JP, Pekkonen E. Modulation of sensory cortical activity by deep brain stimulation in advanced Parkinson's Disease. Eur J Neurosci 2022; 56:3979-3990. [PMID: 35560964 PMCID: PMC9544049 DOI: 10.1111/ejn.15692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Despite optimal oral drug treatment, about 90% of patients with Parkinson's disease develop motor fluctuation and dyskinesia within 5-10 years from the diagnosis. Moreover, the patients show non-motor symptoms in different sensory domains. Bilateral deep brain stimulation applied to the subthalamic nucleus is considered the most effective treatment in advanced Parkinson's disease and it has been suggested to affect sensorimotor modulation and relate to motor improvement in patients. However, observations on the relationship between sensorimotor activity and clinical improvement have remained sparse. Here we studied the somatosensory evoked magnetic fields in thirteen right-handed patients with advanced Parkinson's disease before and 7 months after stimulator implantation. Somatosensory processing was addressed with magnetoencephalography during alternated median nerve stimulation at both wrists. The strengths and the latencies of the ~60-ms responses at the contralateral primary somatosensory cortices were highly variable but detectable and reliably localized in all patients. The response strengths did not differ between preoperative and postoperative DBSON measurements. The change in the response strength between pre- and postoperative condition in the dominant left hemisphere of our right-handed patients correlated with the alleviation of their motor symptoms (p = 0.04). However, the result did not survive correction for multiple comparisons. Magnetoencephalography appears an effective tool to explore non-motor effects in patients with Parkinson's disease, and it may help in understanding the neurophysiological basis of deep brain stimulation. However, the high interindividual variability in the somatosensory responses and poor tolerability of DBSOFF condition warrants larger patient groups and measurements also in non-medicated patients.
Collapse
Affiliation(s)
- Olesia Korsun
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Hanna Renvall
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Jussi Nurminen
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Motion Analysis Laboratory, Children's Hospital, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jyrki P Mäkelä
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|