1
|
Robveille C, Maggi RG, Lashnits E, Donovan TA, Linder KE, Regan DP, Woolard KD, Breitschwerdt EB. Molecular detection of Bartonella spp. DNA in dogs with hemangiosarcoma. PLoS One 2025; 20:e0321806. [PMID: 40261912 PMCID: PMC12013947 DOI: 10.1371/journal.pone.0321806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025] Open
Abstract
INTRODUCTION The potential role of pathogens, particularly vector-transmitted infectious agents, as a cofactor or cause of neoplasia has not been intensively investigated. We previously reported a potential link between Bartonella spp. bacteremia and splenic hemangiosarcoma (HSA) in dogs living in the United States. The purpose of this study was to: 1/ further determine the prevalence of Bartonella spp. DNA in dogs with splenic HSA from throughout the United States; 2/ assess the impact of sample preservation methods on Bartonella spp. DNA amplification using characterized tissue samples from dogs diagnosed with HSA. METHODS In a blinded manner, we determined the presence of Bartonella spp. DNA in scrolls from biorepository formalin-fixed paraffin-embedded (FFPE) spleens from dogs living in three distant locations geographically transecting the United States. DNA extracted from non-lesional spleens (n = 249), nodular lymphoid hyperplasia spleens (n = 248), and splenic HSA (n = 330) were tested by quantitative polymerase chain reaction (qPCR), and droplet digital PCR (ddPCR). Subsequently, Bartonella PCR results from FFPE tissues and formalin-fixed tissues were compared using previously tested fresh frozen tissues from an additional 48 dogs with HSA. RESULTS There was no significant difference in the proportion of Bartonella PCR positive FFPE tissues from dogs diagnosed with an alesional spleen, nodular lymphoid hyperplasia, and splenic HSA. Regardless of the histological diagnosis, the most common Bartonella species identified was B. henselae (32/38). Bartonella spp. DNA was detected in a significantly larger proportion of fresh frozen tissues compared to FFPE tissues, when tested by qPCR (22/48 versus 1/48; p <0.0001) or ddPCR (19/48 versus 1/48; p <0.0001). Using ddPCR, Bartonella DNA was more often amplified from formalin-fixed tissues compared to FFPE tissues (15/39 versus 1/39; p <0.0001). The sensitivity of qPCR on FFPE samples and formalin-fixed samples, when comparing to fresh frozen samples as the reference standard, was 4.5% and 11.8%, respectively. CONCLUSION Due to decreased DNA amplification efficiency, FFPE scrolls should not be used for the detection of Bartonella infection in spleen samples from dogs with HSA. PCR testing of fresh frozen tissues substantially improves the detection of Bartonella spp. infection. If fresh frozen tissues are not available, formalin-fixed tissues should be tested with digital PCR to enhance Bartonella DNA detection.
Collapse
Affiliation(s)
- Cynthia Robveille
- Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, North Carolina State University - College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Ricardo G. Maggi
- Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, North Carolina State University - College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Erin Lashnits
- Department of Medical Sciences, University of Wisconsin-Madison - School of Veterinary Medicine, Madison, Wisconsin, United States of America
| | - Taryn A. Donovan
- Department of Anatomic Pathology, The Schwarzman Animal Medical Center, New York, New York, United States of America
| | - Keith E. Linder
- Department of Population Health and Pathobiology, North Carolina State University - College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Daniel P. Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University - College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, United States of America
| | - Kevin D. Woolard
- Departments of Pathology, Microbiology and Immunology, University of California-Davis - School of Veterinary Medicine, Davis, California, United States of America
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, North Carolina State University - College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| |
Collapse
|
3
|
Colbert LE, El Alam MB, Wang R, Karpinets T, Lo D, Lynn EJ, Harris TA, Elnaggar JH, Yoshida-Court K, Tomasic K, Bronk JK, Sammouri J, Yanamandra AV, Olvera AV, Carlin LG, Sims T, Delgado Medrano AY, Napravnik TC, O'Hara M, Lin D, Abana CO, Li HX, Eifel PJ, Jhingran A, Joyner M, Lin L, Ramondetta LM, Futreal AM, Schmeler KM, Mathew G, Dorta-Estremera S, Zhang J, Wu X, Ajami NJ, Wong M, Taniguchi C, Petrosino JF, Sastry KJ, Okhuysen PC, Martinez SA, Tan L, Mahmud I, Lorenzi PL, Wargo JA, Klopp AH. Tumor-resident Lactobacillus iners confer chemoradiation resistance through lactate-induced metabolic rewiring. Cancer Cell 2023; 41:1945-1962.e11. [PMID: 37863066 PMCID: PMC10841640 DOI: 10.1016/j.ccell.2023.09.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types.
Collapse
Affiliation(s)
- Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Molly B El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Lo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erica J Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A Harris
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob H Elnaggar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; LSU School of Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katarina Tomasic
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julianna K Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julie Sammouri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ananta V Yanamandra
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adilene V Olvera
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lily G Carlin
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Travis Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea Y Delgado Medrano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Cisneros Napravnik
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Madison O'Hara
- Department of Thoracic Head and Neck Medical Oncology at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chike O Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hannah X Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patricia J Eifel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Joyner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lilie Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lois M Ramondetta
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew M Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Geena Mathew
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Wong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cullen Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - K Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pablo C Okhuysen
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; LSU School of Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Mathlouthi NEH, Oumarou Hama H, Belguith I, Charfi S, Boudawara T, Lagier JC, Ammar Keskes L, Grine G, Gdoura R. Colorectal Cancer Archaeome: A Metagenomic Exploration, Tunisia. Curr Issues Mol Biol 2023; 45:7572-7581. [PMID: 37754261 PMCID: PMC10527824 DOI: 10.3390/cimb45090477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 09/28/2023] Open
Abstract
Colorectal cancer (CRC) is a serious public health problem known to have a multifactorial etiology. The association between gut microbiota and CRC has been widely studied; however, the link between archaea and CRC has not been sufficiently studied. To investigate the involvement of archaea in colorectal carcinogenesis, we performed a metagenomic analysis of 68 formalin-embedded paraffin fixed tissues from tumoral (n = 33) and healthy mucosa (n = 35) collected from 35 CRC Tunisian patients. We used two DNA extraction methods: Generead DNA FFPE kit (Qiagen, Germantown, MD, USA) and Chelex. We then sequenced the samples using Illumina Miseq. Interestingly, DNA extraction exclusively using Chelex generated enough DNA for sequencing of all samples. After data filtering and processing, we reported the presence of archaeal sequences, which represented 0.33% of all the reads generated. In terms of abundance, we highlighted a depletion in methanogens and an enrichment in Halobacteria in the tumor tissues, while the correlation analysis revealed a significant association between the Halobacteria and the tumor mucosa (p < 0.05). We reported a strong correlation between Natrialba magadii, Sulfolobus acidocaldarius, and tumor tissues, and a weak correlation between Methanococcus voltae and healthy adjacent mucosa. Here, we demonstrated the feasibility of archaeome analysis from formol fixed paraffin-embedded (FFPE) tissues using simple protocols ranging from sampling to data analysis, and reported a significant association between Halobacteria and tumor tissues in Tunisian patients with CRC. The importance of our study is that it represents the first metagenomic analysis of Tunisian CRC patients' gut microbiome, which consists of sequencing DNA extracted from paired tumor-adjacent FFPE tissues collected from CRC patients. The detection of archaeal sequences in our samples confirms the feasibility of carrying out an archaeome analysis from FFPE tissues using a simple DNA extraction protocol. Our analysis revealed the enrichment of Halobacteria, especially Natrialba magadii, in tumor mucosa compared to the normal mucosa in CRC Tunisian patients. Other species were also associated with CRC, including Sulfolobus acidocaldarius and Methanococcus voltae, which is a methanogenic archaea; both species were found to be correlated with adjacent healthy tissues.
Collapse
Affiliation(s)
- Nour El Houda Mathlouthi
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia
| | - Hamadou Oumarou Hama
- IHU Méditerranée Infection, UMR MEPHI, 19-21, Bd. Jean Moulin, 13005 Marseille, France
| | - Imen Belguith
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia
| | - Slim Charfi
- Department of Pathology, CHU Habib Bourguiba, Sfax 3029, Tunisia
| | - Tahya Boudawara
- Department of Pathology, CHU Habib Bourguiba, Sfax 3029, Tunisia
| | | | - Leila Ammar Keskes
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia
| | - Ghiles Grine
- IHU Méditerranée Infection, UMR MEPHI, 19-21, Bd. Jean Moulin, 13005 Marseille, France
- Institut de Recherche pour le Développement (IRD), Aix-Marseille University, Microbes Evolution Phylogeny and Infections (MEPHI), 13005 Marseille, France
| | - Radhouane Gdoura
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia
| |
Collapse
|