1
|
Garcia-Moreno FM, Badenes-Sastre M, Expósito F, Rodriguez-Fortiz MJ, Bermudez-Edo M. EEG headbands vs caps: How many electrodes do I need to detect emotions? The case of the MUSE headband. Comput Biol Med 2025; 184:109463. [PMID: 39608032 DOI: 10.1016/j.compbiomed.2024.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND In the realm of emotion detection, comfort and portability play crucial roles in enhancing user experiences. However, few works study the reduction in the number of electrodes used to detect emotions, and none of them compare the location of these electrodes with a commercial low-cost headband. METHODS This work explores the potential of wearable EEG devices, specifically the Muse S headband, for emotion classification in terms of valence and arousal. We conducted a direct comparison between the Muse S, with its only four electrodes, and the DEAP dataset, which employs 32-electrode in a more intrusive headset. DEAP is a benchmark dataset constructed by emotions elicited by music. Our methodology focused on utilizing raw data and extracting four common frequency ranges. In particular, we select from DEAP the 4 electrodes that are similar to those in the Muse S. Additionally, we created a dataset using the Muse S, where we segmented the complete video into fixed-size temporal windows. Our 4-electrodes dataset uses film clips to elicit emotions, classified according to the Self-Assessment Manikin. RESULTS Our findings indicate that the Muse S, despite its limited electrode count, can effectively discriminate between high and low valence/arousal emotions with accuracy comparable to the accuracy obtained with all the DEAP electrodes. The Gamma band emerged as particularly effective for valence detection. Using a Muse device and raw data, the best performance achieved a G-Mean only 1-2% lower than that of the DEAP dataset, demonstrating that comparable results can be obtained with a simplified setup. CONCLUSIONS While the Muse-S did not reach DEAP in terms of outcomes, it proved to be a viable, lower-cost, less intrusive alternative, and adaptable for everyday use. The dataset created for this study is publicly available at https://doi.org/10.5281/zenodo.8431451.
Collapse
Affiliation(s)
- Francisco M Garcia-Moreno
- Department of Software Engineering, Computer Science School, University of Granada, Granada, Spain; Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain.
| | | | | | - Maria Jose Rodriguez-Fortiz
- Department of Software Engineering, Computer Science School, University of Granada, Granada, Spain; Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Maria Bermudez-Edo
- Department of Software Engineering, Computer Science School, University of Granada, Granada, Spain; Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Liu W, Zhou B, Li G, Luo X. Enhanced diagnostics for generalized anxiety disorder: leveraging differential channel and functional connectivity features based on frontal EEG signals. Sci Rep 2024; 14:22789. [PMID: 39354007 PMCID: PMC11445517 DOI: 10.1038/s41598-024-73615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Generalized Anxiety Disorder (GAD) is a chronic anxiety condition characterized by persistent excessive worry, anxiety, and fear. Current diagnostic practices primarily rely on clinicians' subjective assessments and experience, highlighting a need for more objective and reliable methods. This study collected 10-minute resting-state electroencephalogram (EEG) from 45 GAD patients and 36 healthy controls (HC), focusing on six frontal EEG channels for preprocessing, data segmentation, and frequency band division. Innovatively, this study introduced the "Differential Channel" method, which enhances classification performance by enhancing the information related to anxiety from the data, thereby highlighting signal differences. Utilizing the preprocessed EEG signals, undirected functional connectivity features (Phase Lag Index, Pearson Correlation Coefficient, and Mutual Information) and directed functional connectivity features (Partial Directed Coherence) were extracted. Multiple machine learning models were applied to distinguish between GAD patients and HC. The results show that the Deep Forest classifier achieves excellent performance with a 12-second time window of DiffFeature. In particular, the classification of GAD and HC was successfully obtained by combining OriFeature and DiffFeature on Mutual Information with a maximum accuracy of 98.08%. Furthermore, it was observed that undirected functional connectivity features significantly outperformed directed functional connectivity when fewer frontal channels were used. Overall, the methodologies developed in this study offer accurate and practical identification strategies for the early screening and clinical diagnosis of GAD, offering the necessary theoretical and technical support for further enhancing the portability of EEG devices.
Collapse
Affiliation(s)
- Wei Liu
- College of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China
| | - Bin Zhou
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, 321004, China
| | - Gang Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xiaodong Luo
- The Second Hospital of Jinhua, Jinhua, 321016, China.
| |
Collapse
|
3
|
Jafleh EA, Alnaqbi FA, Almaeeni HA, Faqeeh S, Alzaabi MA, Al Zaman K. The Role of Wearable Devices in Chronic Disease Monitoring and Patient Care: A Comprehensive Review. Cureus 2024; 16:e68921. [PMID: 39381470 PMCID: PMC11461032 DOI: 10.7759/cureus.68921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/10/2024] Open
Abstract
Wearable health devices are becoming vital in chronic disease management because they offer real-time monitoring and personalized care. This review explores their effectiveness and challenges across medical fields, including cardiology, respiratory health, neurology, endocrinology, orthopedics, oncology, and mental health. A thorough literature search identified studies focusing on wearable devices' impact on patient outcomes. In cardiology, wearables have proven effective for monitoring hypertension, detecting arrhythmias, and aiding cardiac rehabilitation. In respiratory health, these devices enhance asthma management and continuous monitoring of critical parameters. Neurological applications include seizure detection and Parkinson's disease management, with wearables showing promising results in improving patient outcomes. In endocrinology, wearable technology advances thyroid dysfunction monitoring, fertility tracking, and diabetes management. Orthopedic applications include improved postsurgical recovery and rehabilitation, while wearables help in early complication detection in oncology. Mental health benefits include anxiety detection, post-traumatic stress disorder management, and stress reduction through wearable biofeedback. In conclusion, wearable health devices offer transformative potential for managing chronic illnesses by enhancing real-time monitoring and patient engagement. Despite significant improvements in adherence and outcomes, challenges with data accuracy and privacy persist. However, with ongoing innovation and collaboration, we can all be part of the solution to maximize the benefits of wearable technologies in healthcare.
Collapse
Affiliation(s)
- Eman A Jafleh
- College of Dentistry, University of Sharjah, Sharjah, ARE
| | | | | | - Shooq Faqeeh
- College of Medicine, University of Sharjah, Sharjah, ARE
| | - Moza A Alzaabi
- Internal Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, ARE
| | - Khaled Al Zaman
- General Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, ARE
| |
Collapse
|
4
|
Luo X, Zhou B, Fang J, Cherif-Riahi Y, Li G, Shen X. Integrating EEG and Ensemble Learning for Accurate Grading and Quantification of Generalized Anxiety Disorder: A Novel Diagnostic Approach. Diagnostics (Basel) 2024; 14:1122. [PMID: 38893648 PMCID: PMC11172130 DOI: 10.3390/diagnostics14111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Current assessments for generalized anxiety disorder (GAD) are often subjective and do not rely on a standardized measure to evaluate the GAD across its severity levels. The lack of objective and multi-level quantitative diagnostic criteria poses as a significant challenge for individualized treatment strategies. To address this need, this study aims to establish a GAD grading and quantification diagnostic model by integrating an electroencephalogram (EEG) and ensemble learning. In this context, a total of 39 normal subjects and 80 GAD patients were recruited and divided into four groups: normal control, mild GAD, moderate GAD, and severe GAD. Ten minutes resting state EEG data were collected for every subject. Functional connectivity features were extracted from each EEG segment with different time windows. Then, ensemble learning was employed for GAD classification studies and brain mechanism analysis. Hence, the results showed that the Catboost model with a 10 s time window achieved an impressive 98.1% accuracy for four-level classification. Particularly, it was found that those functional connections situated between the frontal and temporal lobes were significantly more abundant than in other regions, with the beta rhythm being the most prominent. The analysis framework and findings of this study provide substantial evidence for the applications of artificial intelligence in the clinical diagnosis of GAD.
Collapse
Affiliation(s)
- Xiaodong Luo
- The Second Hospital of Jinhua, Jinhua 321016, China;
| | - Bin Zhou
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China;
| | - Jiaqi Fang
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China;
| | - Yassine Cherif-Riahi
- College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China;
| | - Gang Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China;
| | - Xueqian Shen
- The Second Hospital of Jinhua, Jinhua 321016, China;
| |
Collapse
|
5
|
Baygin M, Barua PD, Dogan S, Tuncer T, Hong TJ, March S, Tan RS, Molinari F, Acharya UR. Automated anxiety detection using probabilistic binary pattern with ECG signals. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108076. [PMID: 38422891 DOI: 10.1016/j.cmpb.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND AIM Anxiety disorder is common; early diagnosis is crucial for management. Anxiety can induce physiological changes in the brain and heart. We aimed to develop an efficient and accurate handcrafted feature engineering model for automated anxiety detection using ECG signals. MATERIALS AND METHODS We studied open-access electrocardiography (ECG) data of 19 subjects collected via wearable sensors while they were shown videos that might induce anxiety. Using the Hamilton Anxiety Rating Scale, subjects are categorized into normal, light anxiety, moderate anxiety, and severe anxiety groups. ECGs were divided into non-overlapping 4- (Case 1), 5- (Case 2), and 6-second (Case 3) segments for analysis. We proposed a self-organized dynamic pattern-based feature extraction function-probabilistic binary pattern (PBP)-in which patterns within the function were determined by the probabilities of the input signal-dependent values. This was combined with tunable q-factor wavelet transform to facilitate multileveled generation of feature vectors in both spatial and frequency domains. Neighborhood component analysis and Chi2 functions were used to select features and reduce data dimensionality. Shallow k-nearest neighbors and support vector machine classifiers were used to calculate four (=2 × 2) classifier-wise results per input signal. From the latter, novel self-organized combinational majority voting was applied to calculate an additional five voted results. The optimal final model outcome was chosen from among the nine (classifier-wise and voted) results using a greedy algorithm. RESULTS Our model achieved classification accuracies of over 98.5 % for all three cases. Ablation studies confirmed the incremental accuracy of PBP-based feature engineering over traditional local binary pattern feature extraction. CONCLUSIONS The results demonstrated the feasibility and accuracy of our PBP-based feature engineering model for anxiety classification using ECG signals.
Collapse
Affiliation(s)
- Mehmet Baygin
- Department of Computer Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum, Turkey
| | - Prabal Datta Barua
- School of Business (Information System), University of Southern Queensland, Australia
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, 23119, Elazig, Turkey.
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, 23119, Elazig, Turkey
| | - Tan Jen Hong
- Data Science and Artificial Intelligence Lab, Singapore General Hospital, Singapore
| | - Sonja March
- Centre for Health Research, University of Southern Queensland, Australia; School of Psychology and Wellbeing, University of Southern Queensland, Australia
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Filippo Molinari
- Biolab, PolitoBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - U Rajendra Acharya
- Centre for Health Research, University of Southern Queensland, Australia; School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
6
|
Aldayel M, Al-Nafjan A. A comprehensive exploration of machine learning techniques for EEG-based anxiety detection. PeerJ Comput Sci 2024; 10:e1829. [PMID: 38435618 PMCID: PMC10909191 DOI: 10.7717/peerj-cs.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/29/2023] [Indexed: 03/05/2024]
Abstract
The performance of electroencephalogram (EEG)-based systems depends on the proper choice of feature extraction and machine learning algorithms. This study highlights the significance of selecting appropriate feature extraction and machine learning algorithms for EEG-based anxiety detection. We explored different annotation/labeling, feature extraction, and classification algorithms. Two measurements, the Hamilton anxiety rating scale (HAM-A) and self-assessment Manikin (SAM), were used to label anxiety states. For EEG feature extraction, we employed the discrete wavelet transform (DWT) and power spectral density (PSD). To improve the accuracy of anxiety detection, we compared ensemble learning methods such as random forest (RF), AdaBoost bagging, and gradient bagging with conventional classification algorithms including linear discriminant analysis (LDA), support vector machine (SVM), and k-nearest neighbor (KNN) classifiers. We also evaluated the performance of the classifiers using different labeling (SAM and HAM-A) and feature extraction algorithms (PSD and DWT). Our findings demonstrated that HAM-A labeling and DWT-based features consistently yielded superior results across all classifiers. Specifically, the RF classifier achieved the highest accuracy of 87.5%, followed by the Ada boost bagging classifier with an accuracy of 79%. The RF classifier outperformed other classifiers in terms of accuracy, precision, and recall.
Collapse
Affiliation(s)
- Mashael Aldayel
- Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Nafjan
- Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Chizhikova AA. [Electroencephalography: features of the obtained data and its applicability in psychiatry]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:31-39. [PMID: 38884427 DOI: 10.17116/jnevro202412405131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Presently, there is an increased interest in expanding the range of diagnostic and scientific applications of electroencephalography (EEG). The method is attractive due to non-invasiveness, availability of equipment with a wide range of modifications for various purposes, and the ability to track the dynamics of brain electrical activity directly and with high temporal resolution. Spectral, coherency and other types of analysis provide volumetric information about its power, frequency distribution, spatial organization of signal and its self-similarity in dynamics or in different sections at a time. The development of computing technologies provides processing of volumetric data obtained using EEG and a qualitatively new level of their analysis using various mathematical models. This review discusses benefits and limitations of using the EEG in scientific research, currently known interpretation of the obtained data and its physiological and pathological correlates. It is expected to determine the complex relationship between the parameters of brain electrical activity and various functional and pathological conditions. The possibility of using EEG characteristics as biomarkers of various physiological and pathological conditions is being considered. Electronic databases, including MEDLINE (on PubMed), Google Scholar and Russian Scientific Citation Index (RSCI, on elibrary.ru), scientific journals and books were searched to find relevant studies.
Collapse
Affiliation(s)
- A A Chizhikova
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
8
|
Liu W, Li G, Huang Z, Jiang W, Luo X, Xu X. Enhancing generalized anxiety disorder diagnosis precision: MSTCNN model utilizing high-frequency EEG signals. Front Psychiatry 2023; 14:1310323. [PMID: 38179243 PMCID: PMC10764566 DOI: 10.3389/fpsyt.2023.1310323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Generalized Anxiety Disorder (GAD) is a prevalent mental disorder on the rise in modern society. It is crucial to achieve precise diagnosis of GAD for improving the treatments and averting exacerbation. Although a growing number of researchers beginning to explore the deep learning algorithms for detecting mental disorders, there is a dearth of reports concerning precise GAD diagnosis. This study proposes a multi-scale spatial-temporal local sequential and global parallel convolutional model, named MSTCNN, which designed to achieve highly accurate GAD diagnosis using high-frequency electroencephalogram (EEG) signals. To this end, 10-min resting EEG data were collected from 45 GAD patients and 36 healthy controls (HC). Various frequency bands were extracted from the EEG data as the inputs of the MSTCNN. The results demonstrate that the proposed MSTCNN, combined with the attention mechanism of Squeeze-and-Excitation Networks, achieves outstanding classification performance for GAD detection, with an accuracy of 99.48% within the 4-30 Hz EEG data, which is competitively related to state-of-art methods in terms of GAD classification. Furthermore, our research unveils an intriguing revelation regarding the pivotal role of high-frequency band in GAD diagnosis. As the frequency band increases, diagnostic accuracy improves. Notably, high-frequency EEG data ranging from 10-30 Hz exhibited an accuracy rate of 99.47%, paralleling the performance of the broader 4-30 Hz band. In summary, these findings move a step forward towards the practical application of automatic diagnosis of GAD and provide basic theory and technical support for the development of future clinical diagnosis system.
Collapse
Affiliation(s)
- Wei Liu
- College of Computer Science and Technology, Zhejiang Normal University, Jinhua, China
| | - Gang Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
| | - Ziyi Huang
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Weixiong Jiang
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
| | | | - Xingjuan Xu
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
9
|
Abd-Alrazaq A, AlSaad R, Harfouche M, Aziz S, Ahmed A, Damseh R, Sheikh J. Wearable Artificial Intelligence for Detecting Anxiety: Systematic Review and Meta-Analysis. J Med Internet Res 2023; 25:e48754. [PMID: 37938883 PMCID: PMC10666012 DOI: 10.2196/48754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Anxiety disorders rank among the most prevalent mental disorders worldwide. Anxiety symptoms are typically evaluated using self-assessment surveys or interview-based assessment methods conducted by clinicians, which can be subjective, time-consuming, and challenging to repeat. Therefore, there is an increasing demand for using technologies capable of providing objective and early detection of anxiety. Wearable artificial intelligence (AI), the combination of AI technology and wearable devices, has been widely used to detect and predict anxiety disorders automatically, objectively, and more efficiently. OBJECTIVE This systematic review and meta-analysis aims to assess the performance of wearable AI in detecting and predicting anxiety. METHODS Relevant studies were retrieved by searching 8 electronic databases and backward and forward reference list checking. In total, 2 reviewers independently carried out study selection, data extraction, and risk-of-bias assessment. The included studies were assessed for risk of bias using a modified version of the Quality Assessment of Diagnostic Accuracy Studies-Revised. Evidence was synthesized using a narrative (ie, text and tables) and statistical (ie, meta-analysis) approach as appropriate. RESULTS Of the 918 records identified, 21 (2.3%) were included in this review. A meta-analysis of results from 81% (17/21) of the studies revealed a pooled mean accuracy of 0.82 (95% CI 0.71-0.89). Meta-analyses of results from 48% (10/21) of the studies showed a pooled mean sensitivity of 0.79 (95% CI 0.57-0.91) and a pooled mean specificity of 0.92 (95% CI 0.68-0.98). Subgroup analyses demonstrated that the performance of wearable AI was not moderated by algorithms, aims of AI, wearable devices used, status of wearable devices, data types, data sources, reference standards, and validation methods. CONCLUSIONS Although wearable AI has the potential to detect anxiety, it is not yet advanced enough for clinical use. Until further evidence shows an ideal performance of wearable AI, it should be used along with other clinical assessments. Wearable device companies need to develop devices that can promptly detect anxiety and identify specific time points during the day when anxiety levels are high. Further research is needed to differentiate types of anxiety, compare the performance of different wearable devices, and investigate the impact of the combination of wearable device data and neuroimaging data on the performance of wearable AI. TRIAL REGISTRATION PROSPERO CRD42023387560; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=387560.
Collapse
Affiliation(s)
- Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Rawan AlSaad
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Manale Harfouche
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Sarah Aziz
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Arfan Ahmed
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Rafat Damseh
- Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Javaid Sheikh
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| |
Collapse
|
10
|
EEG channel selection-based binary particle swarm optimization with recurrent convolutional autoencoder for emotion recognition. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
11
|
Analysis of Altered Brain Dynamics During Episodic Recall and Detection of Generalized Anxiety Disorder. Neuroscience 2023:S0306-4522(23)00032-5. [PMID: 36707018 DOI: 10.1016/j.neuroscience.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/12/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Numerous blood oxygenation level-dependent (BOLD) imaging studies have shown that generalized anxiety disorder (GAD) can lead to abnormal activation of specific brain regions in patients. However, these methods lack sufficient temporal resolution to explain the underlying brain dynamics of GAD. The electroencephalogram (EEG) microstate allows us to explore brain dynamics at the subsecond level. We performed microstate analysis and source localization on the EEG data of 15 GADs and 14 healthy controls (HCs). We found two kinds of noncanonical microstate topologies (MS-4 and MS-5) in the episodic recall tasks. Compared with HCs, the duration and coverage of MS-5 were significantly reduced in GADs and positively correlated with the GAD-7 scores. The results of source localization showed obvious activation in the prefrontal lobe, parietal lobe, temporal lobe, and fusiform gyri. Moreover, we propose an improved capsule network to capture EEG spatial features and combine them with temporal parameters of microstates for more reliable GAD detection. The sensor-level EEG data and the source-level EEG data obtained by source reconstruction are used as input to the model. The optimal configuration combined the spatial features of source-level data with microstate features and achieved the highest classification accuracy. Collectively, the statistical results indicated remarkable differences in dynamic brain parameters between the two groups, and patients with GAD may have abnormalities in their higher sensory cortex that affect the processing of anxiety signals. Furthermore, our proposed fusion framework provides a reliable method for GAD automatic detection.
Collapse
|
12
|
Ancillon L, Elgendi M, Menon C. Machine Learning for Anxiety Detection Using Biosignals: A Review. Diagnostics (Basel) 2022; 12:diagnostics12081794. [PMID: 35892505 PMCID: PMC9332282 DOI: 10.3390/diagnostics12081794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022] Open
Abstract
Anxiety disorder (AD) is a major mental health illness. However, due to the many symptoms and confounding factors associated with AD, it is difficult to diagnose, and patients remain untreated for a long time. Therefore, researchers have become increasingly interested in non-invasive biosignals, such as electroencephalography (EEG), electrocardiogram (ECG), electrodermal response (EDA), and respiration (RSP). Applying machine learning to these signals enables clinicians to recognize patterns of anxiety and differentiate a sick patient from a healthy one. Further, models with multiple and diverse biosignals have been developed to improve accuracy and convenience. This paper reviews and summarizes studies published from 2012 to 2022 that applied different machine learning algorithms with various biosignals. In doing so, it offers perspectives on the strengths and weaknesses of current developments to guide future advancements in anxiety detection. Specifically, this literature review reveals promising measurement accuracies ranging from 55% to 98% for studies with sample sizes of 10 to 102 participants. On average, studies using only EEG seemed to obtain the best performance, but the most accurate results were obtained with EDA, RSP, and heart rate. Random forest and support vector machines were found to be widely used machine learning methods, and they lead to good results as long as feature selection has been performed. Neural networks are also extensively used and provide good accuracy, with the benefit that no feature selection is needed. This review also comments on the effective combinations of modalities and the success of different models for detecting anxiety.
Collapse
Affiliation(s)
- Lou Ancillon
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, Switzerland; (L.A.); (C.M.)
- Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, Switzerland; (L.A.); (C.M.)
- Correspondence:
| | - Carlo Menon
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, Switzerland; (L.A.); (C.M.)
| |
Collapse
|