1
|
Liu XY, Wang WL, Liu M, Chen MY, Pereira T, Doda DY, Ke YF, Wang SY, Wen D, Tong XG, Li WG, Yang Y, Han XD, Sun YL, Song X, Hao CY, Zhang ZH, Liu XY, Li CY, Peng R, Song XX, Yasi A, Pang MJ, Zhang K, He RN, Wu L, Chen SG, Chen WJ, Chao YG, Hu CG, Zhang H, Zhou M, Wang K, Liu PF, Chen C, Geng XY, Qin Y, Gao DR, Song EM, Cheng LL, Chen X, Ming D. Recent applications of EEG-based brain-computer-interface in the medical field. Mil Med Res 2025; 12:14. [PMID: 40128831 PMCID: PMC11931852 DOI: 10.1186/s40779-025-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Brain-computer interfaces (BCIs) represent an emerging technology that facilitates direct communication between the brain and external devices. In recent years, numerous review articles have explored various aspects of BCIs, including their fundamental principles, technical advancements, and applications in specific domains. However, these reviews often focus on signal processing, hardware development, or limited applications such as motor rehabilitation or communication. This paper aims to offer a comprehensive review of recent electroencephalogram (EEG)-based BCI applications in the medical field across 8 critical areas, encompassing rehabilitation, daily communication, epilepsy, cerebral resuscitation, sleep, neurodegenerative diseases, anesthesiology, and emotion recognition. Moreover, the current challenges and future trends of BCIs were also discussed, including personal privacy and ethical concerns, network security vulnerabilities, safety issues, and biocompatibility.
Collapse
Affiliation(s)
- Xiu-Yun Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Wen-Long Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Miao Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Ming-Yi Chen
- Department of Micro/Nano Electronics, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Tânia Pereira
- Institute for Systems and Computer Engineering, Technology and Science, 4099-002, Porto, Portugal
| | - Desta Yakob Doda
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Yu-Feng Ke
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Dong Wen
- School of Intelligence Science and Technology, University of Sciences and Technology Beijing, Beijing, 100083, China
| | | | - Wei-Guang Li
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Xiao-Di Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu-Lin Sun
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Cong-Ying Hao
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Zi-Hua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xin-Yang Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Chun-Yang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Rui Peng
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xiao-Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Abi Yasi
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Mei-Jun Pang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Kuo Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Run-Nan He
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Le Wu
- Department of Electric Engineering and Information Science, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Geng Chen
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen-Jin Chen
- Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yan-Gong Chao
- The First Hospital of Tsinghua University, Beijing, 100016, China
| | - Cheng-Gong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Heng Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Beijing, 110122, China
| | - Min Zhou
- Department of Critical Care Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, 230031, China
| | - Kun Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Peng-Fei Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Chen Chen
- School of Computer Science, Fudan University, Shanghai, 200438, China
| | - Xin-Yi Geng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yun Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dong-Rui Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - En-Ming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Long-Long Cheng
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China.
| | - Xun Chen
- Department of Electric Engineering and Information Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Dong Ming
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China.
| |
Collapse
|
3
|
Maslova O, Komarova Y, Shusharina N, Kolsanov A, Zakharov A, Garina E, Pyatin V. Non-invasive EEG-based BCI spellers from the beginning to today: a mini-review. Front Hum Neurosci 2023; 17:1216648. [PMID: 37680264 PMCID: PMC10480564 DOI: 10.3389/fnhum.2023.1216648] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
The defeat of the central motor neuron leads to the motor disorders. Patients lose the ability to control voluntary muscles, for example, of the upper limbs, which introduces a fundamental dissonance in the possibility of daily use of a computer or smartphone. As a result, the patients lose the ability to communicate with other people. The article presents the most popular paradigms used in the brain-computer-interface speller system and designed for typing by people with severe forms of the movement disorders. Brain-computer interfaces (BCIs) have emerged as a promising technology for individuals with communication impairments. BCI-spellers are systems that enable users to spell words by selecting letters on a computer screen using their brain activity. There are three main types of BCI-spellers: P300, motor imagery (MI), and steady-state visual evoked potential (SSVEP). However, each type has its own limitations, which has led to the development of hybrid BCI-spellers that combine the strengths of multiple types. Hybrid BCI-spellers can improve accuracy and reduce the training period required for users to become proficient. Overall, hybrid BCI-spellers have the potential to improve communication for individuals with impairments by combining the strengths of multiple types of BCI-spellers. In conclusion, BCI-spellers are a promising technology for individuals with communication impairments. P300, MI, and SSVEP are the three main types of BCI-spellers, each with their own advantages and limitations. Further research is needed to improve the accuracy and usability of BCI-spellers and to explore their potential applications in other areas such as gaming and virtual reality.
Collapse
Affiliation(s)
- Olga Maslova
- Neurosciences Research Institute, Samara State Medical University, Samara, Russia
| | - Yuliya Komarova
- Neurosciences Research Institute, Samara State Medical University, Samara, Russia
| | - Natalia Shusharina
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander Kolsanov
- Department of Operative Surgery and Clinical Anatomy with a Course of Innovative Technologies, Samara State Medical University, Samara, Russia
| | - Alexander Zakharov
- Neurosciences Research Institute, Samara State Medical University, Samara, Russia
| | - Evgenia Garina
- Department of Physical Culture, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vasiliy Pyatin
- Neurosciences Research Institute, Samara State Medical University, Samara, Russia
| |
Collapse
|
6
|
Pan J, Chen X, Ban N, He J, Chen J, Huang H. Advances in P300 brain-computer interface spellers: toward paradigm design and performance evaluation. Front Hum Neurosci 2022; 16:1077717. [PMID: 36618996 PMCID: PMC9810759 DOI: 10.3389/fnhum.2022.1077717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
A brain-computer interface (BCI) is a non-muscular communication technology that provides an information exchange channel for our brains and external devices. During the decades, BCI has made noticeable progress and has been applied in many fields. One of the most traditional BCI applications is the BCI speller. This article primarily discusses the progress of research into P300 BCI spellers and reviews four types of P300 spellers: single-modal P300 spellers, P300 spellers based on multiple brain patterns, P300 spellers with multisensory stimuli, and P300 spellers with multiple intelligent techniques. For each type of P300 speller, we further review several representative P300 spellers, including their design principles, paradigms, algorithms, experimental performance, and corresponding advantages. We particularly emphasized the paradigm design ideas, including the overall layout, individual symbol shapes and stimulus forms. Furthermore, several important issues and research guidance for the P300 speller were identified. We hope that this review can assist researchers in learning the new ideas of these novel P300 spellers and enhance their practical application capability.
Collapse
Affiliation(s)
- Jiahui Pan
- School of Software, South China Normal University, Guangzhou, China
| | - XueNing Chen
- School of Software, South China Normal University, Guangzhou, China
| | - Nianming Ban
- School of Software, South China Normal University, Guangzhou, China
| | - JiaShao He
- School of Software, South China Normal University, Guangzhou, China
| | - Jiayi Chen
- School of Software, South China Normal University, Guangzhou, China
| | - Haiyun Huang
- School of Software, South China Normal University, Guangzhou, China
| |
Collapse
|