1
|
Grassmann G, Di Rienzo L, Ruocco G, Milanetti E, Miotto M. Exploring neural networks to uncover information-richer features for protein interaction prediction. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025:10.1007/s00249-025-01742-2. [PMID: 40178551 DOI: 10.1007/s00249-025-01742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Moving in a crowded cellular environment, proteins have to recognize and bind to each other with high specificity. This specificity reflects in a combination of geometric and chemical complementarities at the core of interacting regions that ultimately influences binding stability. Exploiting such peculiar complementarity patterns, we recently developed CIRNet, a neural network architecture capable of identifying pairs of protein core interacting residues and assisting docking algorithms by rescaling the proposed poses. Here, we present a detailed analysis of the geometric and chemical descriptors utilized by CIRNet, investigating its decision-making process to gain deeper insights into the interactions governing protein-protein binding and their interdependence. Specifically, we quantitatively assess (i) the relative importance of chemical and physical features in network training and (ii) their interplay at protein interfaces. We show that shape and hydrophobic-hydrophilic complementarities contain the most predictive information about the classification outcome. Electrostatic complementarity alone does not achieve high classification accuracy but is required to boost learning. Ultimately, our findings suggest that identifying the most information-dense features may enhance our understanding of the mechanisms driving protein-protein interactions at core interfaces.
Collapse
Affiliation(s)
- Greta Grassmann
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
2
|
Grassmann G, Di Rienzo L, Ruocco G, Miotto M, Milanetti E. Compact Assessment of Molecular Surface Complementarities Enhances Neural Network-Aided Prediction of Key Binding Residues. J Chem Inf Model 2025; 65:2695-2709. [PMID: 39982412 PMCID: PMC11898074 DOI: 10.1021/acs.jcim.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Predicting interactions between proteins is fundamental for understanding the mechanisms underlying cellular processes, since protein-protein complexes are crucial in physiological conditions but also in many diseases, for example by seeding aggregates formation. Despite the many advancements made so far, the performance of docking protocols is deeply dependent on their capability to identify binding regions. From this, the importance of developing low-cost and computationally efficient methods in this field. We present an integrated novel protocol mainly based on compact modeling of protein surface patches via sets of orthogonal polynomials to identify regions of high shape/electrostatic complementarity. By incorporating both hydrophilic and hydrophobic contributions, we define new binding matrices, which serve as effective inputs for training a neural network. In this work, we propose a new Neural Network (NN)-based architecture, Core Interacting Residues Network (CIRNet), which achieves a performance in terms of Area Under the Receiver Operating Characteristic Curve (ROC AUC) of approximately 0.87 in identifying pairs of core interacting residues on a balanced data set. In a blind search for core interacting residues, CIRNet distinguishes them from random decoys with an ROC AUC of 0.72. We test this protocol to enhance docking algorithms by filtering the proposed poses, addressing one of the still open problems in computational biology. Notably, when applied to the top ten models from three widely used docking servers, CIRNet improves docking outcomes, significantly reducing the average RMSD between the selected poses and the native state. Compared to another state-of-the-art tool for rescaling docking poses, CIRNet more efficiently identified the worst poses generated by the three docking servers under consideration and achieved superior rescaling performance in two cases.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.Le A. Moro 5, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
3
|
Sirugue L, Langenfeld F, Lagarde N, Montes M. PLO3S: Protein LOcal Surficial Similarity Screening. Comput Struct Biotechnol J 2024; 26:1-10. [PMID: 38189058 PMCID: PMC10770625 DOI: 10.1016/j.csbj.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
The study of protein molecular surfaces enables to better understand and predict protein interactions. Different methods have been developed in computer vision to compare surfaces that can be applied to protein molecular surfaces. The present work proposes a method using the Wave Kernel Signature: Protein LOcal Surficial Similarity Screening (PLO3S). The descriptor of the PLO3S method is a local surface shape descriptor projected on a unit sphere mapped onto a 2D plane and called Surface Wave Interpolated Maps (SWIM). PLO3S allows to rapidly compare protein surface shapes through local comparisons to filter large protein surfaces datasets in protein structures virtual screening protocols.
Collapse
Affiliation(s)
- Léa Sirugue
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, Hesam Université, 2, rue Conté, Paris, 75003, France
| | - Florent Langenfeld
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, Hesam Université, 2, rue Conté, Paris, 75003, France
| | - Nathalie Lagarde
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, Hesam Université, 2, rue Conté, Paris, 75003, France
| | - Matthieu Montes
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, Hesam Université, 2, rue Conté, Paris, 75003, France
| |
Collapse
|
4
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
5
|
Grassmann G, Di Rienzo L, Gosti G, Leonetti M, Ruocco G, Miotto M, Milanetti E. Electrostatic complementarity at the interface drives transient protein-protein interactions. Sci Rep 2023; 13:10207. [PMID: 37353566 PMCID: PMC10290103 DOI: 10.1038/s41598-023-37130-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023] Open
Abstract
Understanding the mechanisms driving bio-molecules binding and determining the resulting complexes' stability is fundamental for the prediction of binding regions, which is the starting point for drug-ability and design. Characteristics like the preferentially hydrophobic composition of the binding interfaces, the role of van der Waals interactions, and the consequent shape complementarity between the interacting molecular surfaces are well established. However, no consensus has yet been reached on the role of electrostatic. Here, we perform extensive analyses on a large dataset of protein complexes for which both experimental binding affinity and pH data were available. Probing the amino acid composition, the disposition of the charges, and the electrostatic potential they generated on the protein molecular surfaces, we found that (i) although different classes of dimers do not present marked differences in the amino acid composition and charges disposition in the binding region, (ii) homodimers with identical binding region show higher electrostatic compatibility with respect to both homodimers with non-identical binding region and heterodimers. Interestingly, (iii) shape and electrostatic complementarity, for patches defined on short-range interactions, behave oppositely when one stratifies the complexes by their binding affinity: complexes with higher binding affinity present high values of shape complementarity (the role of the Lennard-Jones potential predominates) while electrostatic tends to be randomly distributed. Conversely, complexes with low values of binding affinity exploit Coulombic complementarity to acquire specificity, suggesting that electrostatic complementarity may play a greater role in transient (or less stable) complexes. In light of these results, (iv) we provide a novel, fast, and efficient method, based on the 2D Zernike polynomial formalism, to measure electrostatic complementarity without the need of knowing the complex structure. Expanding the electrostatic potential on a basis of 2D orthogonal polynomials, we can discriminate between transient and permanent protein complexes with an AUC of the ROC of [Formula: see text] 0.8. Ultimately, our work helps shedding light on the non-trivial relationship between the hydrophobic and electrostatic contributions in the binding interfaces, thus favoring the development of new predictive methods for binding affinity characterization.
Collapse
Affiliation(s)
- Greta Grassmann
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Marco Leonetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|