1
|
Korolainen H, Olżyńska A, Pajerski W, Chytrosz-Wrobel P, Vattulainen I, Kulig W, Cwiklik L. Assessing vitamin E acetate as a proxy for E-cigarette additives in a realistic pulmonary surfactant model. Sci Rep 2024; 14:23805. [PMID: 39394419 PMCID: PMC11470143 DOI: 10.1038/s41598-024-75301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Additives in vaping products, such as flavors, preservatives, or thickening agents, are commonly used to enhance user experience. Among these, Vitamin E acetate (VEA) was initially thought to be harmless but has been implicated as the primary cause of e-cigarette or vaping product use-associated lung injury, a serious lung disease. In our study, VEA serves as a proxy for other e-cigarette additives. To explore its harmful effects, we developed an exposure system to subject a pulmonary surfactant (PSurf) model to VEA-rich vapor. Through detailed analysis and atomic-level simulations, we found that VEA tends to cluster into aggregates on the PSurf surface, inducing deformations and weakening its essential elastic properties, critical for respiratory cycle function. Apart from VEA, our experiments also indicate that propylene glycol and vegetable glycerin, widely used in e-liquid mixtures, or their thermal decomposition products, alter surfactant properties. This research provides molecular-level insights into the detrimental impacts of vaping product additives on lung health.
Collapse
Affiliation(s)
- Hanna Korolainen
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic
| | - Wojciech Pajerski
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
| | - Paulina Chytrosz-Wrobel
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland.
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00, Prague, Czech Republic.
| |
Collapse
|
2
|
Morán‐Lalangui M, Coutinho A, Prieto M, Fedorov A, Pérez‐Gil J, Loura LMS, García‐Álvarez B. Exploring protein-protein interactions and oligomerization state of pulmonary surfactant protein C (SP-C) through FRET and fluorescence self-quenching. Protein Sci 2024; 33:e4835. [PMID: 37984447 PMCID: PMC10731621 DOI: 10.1002/pro.4835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Pulmonary surfactant (PS) is a lipid-protein complex that forms films reducing surface tension at the alveolar air-liquid interface. Surfactant protein C (SP-C) plays a key role in rearranging the lipids at the PS surface layers during breathing. The N-terminal segment of SP-C, a lipopeptide of 35 amino acids, contains two palmitoylated cysteines, which affect the stability and structure of the molecule. The C-terminal region comprises a transmembrane α-helix that contains a ALLMG motif, supposedly analogous to a well-studied dimerization motif in glycophorin A. Previous studies have demonstrated the potential interaction between SP-C molecules using approaches such as Bimolecular Complementation assays or computational simulations. In this work, the oligomerization state of SP-C in membrane systems has been studied using fluorescence spectroscopy techniques. We have performed self-quenching and FRET assays to analyze dimerization of native palmitoylated SP-C and a non-palmitoylated recombinant version of SP-C (rSP-C) using fluorescently labeled versions of either protein reconstituted in different lipid systems mimicking pulmonary surfactant environments. Our results reveal that doubly palmitoylated native SP-C remains primarily monomeric. In contrast, non-palmitoylated recombinant SP-C exhibits dimerization, potentiated at high concentrations, especially in membranes with lipid phase separation. Therefore, palmitoylation could play a crucial role in stabilizing the monomeric α-helical conformation of SP-C. Depalmitoylation, high protein densities as a consequence of membrane compartmentalization, and other factors may all lead to the formation of protein dimers and higher-order oligomers, which could have functional implications under certain pathological conditions and contribute to membrane transformations associated with surfactant metabolism and alveolar homeostasis.
Collapse
Affiliation(s)
- Mishelle Morán‐Lalangui
- Department of Biochemistry and Molecular BiologyFaculty of Biology, Complutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre (imas12)”MadridSpain
| | - Ana Coutinho
- iBB Institute for Bioengineering and Bioscience, IST, Universidade de LisboaLisbonPortugal
- Associate Lab i4HB, Institute for Health and Bioeconomy at IST, Universidade de LisboaLisbonPortugal
- Department of Chemistry and BiochemistryFaculty of Sciences, University of LisbonLisbonPortugal
| | - Manuel Prieto
- iBB Institute for Bioengineering and Bioscience, IST, Universidade de LisboaLisbonPortugal
- Associate Lab i4HB, Institute for Health and Bioeconomy at IST, Universidade de LisboaLisbonPortugal
| | - Alexander Fedorov
- iBB Institute for Bioengineering and Bioscience, IST, Universidade de LisboaLisbonPortugal
- Associate Lab i4HB, Institute for Health and Bioeconomy at IST, Universidade de LisboaLisbonPortugal
| | - Jesús Pérez‐Gil
- Department of Biochemistry and Molecular BiologyFaculty of Biology, Complutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre (imas12)”MadridSpain
| | - Luís M. S. Loura
- Department of Chemistry, Coimbra Chemistry Centre, Institute of Molecular Sciences (CQC‐IMS)University of CoimbraCoimbraPortugal
- CNC Centre for Neuroscience and Cell Biology, University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Begoña García‐Álvarez
- Department of Biochemistry and Molecular BiologyFaculty of Biology, Complutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre (imas12)”MadridSpain
- Department of Biochemistry and Molecular BiologyFaculty of Chemistry, Complutense UniversityMadridSpain
| |
Collapse
|
3
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
4
|
Liekkinen J, Olżyńska A, Cwiklik L, Bernardino de la Serna J, Vattulainen I, Javanainen M. Surfactant Proteins SP-B and SP-C in Pulmonary Surfactant Monolayers: Physical Properties Controlled by Specific Protein-Lipid Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4338-4350. [PMID: 36917773 PMCID: PMC10061932 DOI: 10.1021/acs.langmuir.2c03349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C. Given this, in this work we performed nonequilibrium all-atom molecular dynamics simulations to study the interplay of SP-B and SP-C with multicomponent lipid monolayers mimicking the pulmonary surfactant in composition. The simulations were complemented by z-scan fluorescence correlation spectroscopy and atomic force microscopy measurements. Our state-of-the-art simulation model reproduces experimental pressure-area isotherms and lateral diffusion coefficients. In agreement with previous research, the inclusion of either SP-B and SP-C increases surface pressure, and our simulations provide a molecular scale explanation for this effect: The proteins display preferential lipid interactions with phosphatidylglycerol, they reside predominantly in the lipid acyl chain region, and they partition into the liquid expanded phase or even induce it in an otherwise packed monolayer. The latter effect is also visible in our atomic force microscopy images. The research done contributes to a better understanding of the roles of specific lipids and proteins in surfactant function, thus helping to develop better synthetic products for surfactant replacement therapy used in the treatment of many fatal lung-related injuries and diseases.
Collapse
Affiliation(s)
- Juho Liekkinen
- Department
of Physics, University of Helsinki, FI-00560 Helsinki, Finland
| | - Agnieszka Olżyńska
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, CZ-18223 Prague, Czech Republic
| | - Lukasz Cwiklik
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, CZ-18223 Prague, Czech Republic
| | - Jorge Bernardino de la Serna
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
- NIHR
Imperial Biomedical Research Centre, London SW7 2AZ, U.K.
| | - Ilpo Vattulainen
- Department
of Physics, University of Helsinki, FI-00560 Helsinki, Finland
| | - Matti Javanainen
- Institute
of Biotechnology, University of Helsinki, FI-00790 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-16100 Prague 6, Czech Republic
| |
Collapse
|