1
|
Jao CW, Wu YT, Yeh JH, Tsai YF, Hsiao CY, Lau CI. Exploring cortical morphology biomarkers of amnesic mild cognitive impairment using novel fractal dimension-based structural MRI analysis. Eur J Neurosci 2024; 60:6254-6266. [PMID: 39353858 DOI: 10.1111/ejn.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Amnestic mild cognitive impairment (aMCI) is considered as an intermediate stage of Alzheimer's disease, but no MRI biomarkers currently distinguish aMCI from healthy individuals effectively. Fractal dimension, a quantitative parameter, provides superior morphological information compared to conventional cortical thickness methods. Few studies have used cortical fractal dimension values to differentiate aMCI from healthy controls. In this study, we aim to build an automated discriminator for accurately distinguishing aMCI using fractal dimension measures of the cerebral cortex. Thirty aMCI patients and 30 health controls underwent structural MRI of the brain. First, the atrophy of participants' cortical sub-regions of Desikan-Killiany cortical atlas was assessed using fractal dimension and cortical thickness. The fractal dimension is more sensitive than cortical thickness in reducing dimensional effects and may accurately reflect morphological changes of the cortex in aMCI. The aMCI group had significantly lower fractal dimension values in the bilateral temporal lobes, right limbic lobe and right parietal lobe, whereas they showed significantly lower cortical thickness values only in the bilateral temporal lobes. Fractal dimension analysis was able to depict most of the significantly different focal regions detected by cortical thickness, but additionally with more regions. Second, applying the measured fractal dimensions (and cortical thickness) of both cerebral hemispheres, an unsupervised discriminator was built for the aMCI and healthy controls. The proposed fractal dimension-based method achieves 80.54% accuracy in discriminating aMCI from healthy controls. The fractal dimension appears to be a promising biomarker for cortical morphology changes that can discriminate patients with aMCI from healthy controls.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiann-Horng Yeh
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yuh-Feng Tsai
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Diagnostic Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chen-Yu Hsiao
- Department of Diagnostic Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chi Ieong Lau
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, UK
- University Hospital, Taipa, Macau
| |
Collapse
|
2
|
Alarjani M, Almarri B. fMRI-based Alzheimer's disease detection via functional connectivity analysis: a systematic review. PeerJ Comput Sci 2024; 10:e2302. [PMID: 39650470 PMCID: PMC11622848 DOI: 10.7717/peerj-cs.2302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/12/2024] [Indexed: 12/11/2024]
Abstract
Alzheimer's disease is a common brain disorder affecting many people worldwide. It is the primary cause of dementia and memory loss. The early diagnosis of Alzheimer's disease is essential to provide timely care to AD patients and prevent the development of symptoms of this disease. Various non-invasive techniques can be utilized to diagnose Alzheimer's in its early stages. These techniques include functional magnetic resonance imaging, electroencephalography, positron emission tomography, and diffusion tensor imaging. They are mainly used to explore functional and structural connectivity of human brains. Functional connectivity is essential for understanding the co-activation of certain brain regions co-activation. This systematic review scrutinizes various works of Alzheimer's disease detection by analyzing the learning from functional connectivity of fMRI datasets that were published between 2018 and 2024. This work investigates the whole learning pipeline including data analysis, standard preprocessing phases of fMRI, feature computation, extraction and selection, and the various machine learning and deep learning algorithms that are used to predict the occurrence of Alzheimer's disease. Ultimately, the paper analyzed results on AD and highlighted future research directions in medical imaging. There is a need for an efficient and accurate way to detect AD to overcome the problems faced by patients in the early stages.
Collapse
Affiliation(s)
- Maitha Alarjani
- Department of Computer Science, King Faisal University, Alhsa, Saudi Arabia
| | - Badar Almarri
- Department of Computer Science, King Faisal University, Alhsa, Saudi Arabia
| |
Collapse
|
3
|
Singh S, Malo PK, Stezin A, Mensegere AL, Issac TG. Alteration in amygdala subfield volumes and their association with cognition in mild cognitive impairment. J Neurol 2024; 271:5460-5467. [PMID: 38879703 DOI: 10.1007/s00415-024-12500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND The amygdala has an important role in cognitive and affective functions. The involvement of amygdala and related limbic structures is implicated in many aspects of memory and emotion in mild cognitive impairment (MCI). In the present study, we aimed to compare the volumetric measurements of amygdala and its subfields as well as their association with cognitive functions in stable MCI (sMCI). METHODS We performed Addenbrooke's cognitive examination III (ACE-III) test, as well as high-resolution T1-weighted images from 31 participants with sMCI and 31 age-matched healthy controls. The amygdala subfield volumes were extracted using Freesurfer software, and group differences were assessed using general linear model (GLM) with age, gender, education and estimated intracranial volume (ICV) as covariates. Partial correlation was also calculated between cognitive scores and volumes of amygdala subfields in healthy controls and sMCI participants controlling for estimated ICV. RESULTS sMCI participants exhibited significantly reduced volumes in most of the right amygdala subfields, including basal nucleus, accessory basal nucleus, central nucleus, medial nucleus, corticoamygdaloid transition area, and whole amygdala, as well as significantly reduced right amygdala/hippocampus ratio compared to healthy controls. In addition, our results revealed statistically significant positive correlations between ACE memory scores and the volumes of right central nucleus, right medial nucleus, right cortical nucleus, and the right whole amygdala, in sMCI. CONCLUSIONS Our findings revealed volumetric reductions in most of the right amygdala subfields along with its association with the memory functions in sMCI. These findings provide valuable insights into the underlying anatomical factors contributing to neurocognitive symptoms in MCI.
Collapse
Affiliation(s)
- Sadhana Singh
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Palash Kumar Malo
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Albert Stezin
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Abhishek L Mensegere
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Thomas Gregor Issac
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Alarjani M, Almarri B. Multivariate pattern analysis of medical imaging-based Alzheimer's disease. Front Med (Lausanne) 2024; 11:1412592. [PMID: 39099597 PMCID: PMC11294205 DOI: 10.3389/fmed.2024.1412592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/06/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating brain disorder that steadily worsens over time. It is marked by a relentless decline in memory and cognitive abilities. As the disease progresses, it leads to a significant loss of mental function. Early detection of AD is essential to starting treatments that can mitigate the progression of this disease and enhance patients' quality of life. This study aims to observe AD's brain functional connectivity pattern to extract essential patterns through multivariate pattern analysis (MVPA) and analyze activity patterns across multiple brain voxels. The optimized feature extraction techniques are used to obtain the important features for performing the training on the models using several hybrid machine learning classifiers for performing binary classification and multi-class classification. The proposed approach using hybrid machine learning classification has been applied to two public datasets named the Open Access Series of Imaging Studies (OASIS) and the AD Neuroimaging Initiative (ADNI). The results are evaluated using performance metrics, and comparisons have been made to differentiate between different stages of AD using visualization tools.
Collapse
Affiliation(s)
| | - Badar Almarri
- Department of Computer Science, College of Computer Sciences and Information Technology, King Faisal University, Al-Hofuf, Saudi Arabia
| |
Collapse
|
5
|
Zamani J, Jafadideh AT. Predicting the Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Graph Frequency Bands and Functional Connectivity-Based Features. RESEARCH SQUARE 2024:rs.3.rs-4549428. [PMID: 38947050 PMCID: PMC11213162 DOI: 10.21203/rs.3.rs-4549428/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Accurate prediction of the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is crucial for disease management. Machine learning techniques have demonstrated success in classifying AD and MCI cases, particularly with the use of resting-state functional magnetic resonance imaging (rs-fMRI) data.This study utilized three years of rs-fMRI data from the ADNI, involving 142 patients with stable MCI (sMCI) and 136 with progressive MCI (pMCI). Graph signal processing was applied to filter rs-fMRI data into low, middle, and high frequency bands. Connectivity-based features were derived from both filtered and unfiltered data, resulting in a comprehensive set of 100 features, including global graph metrics, minimum spanning tree (MST) metrics, triadic interaction metrics, hub tendency metrics, and the number of links. Feature selection was enhanced using particle swarm optimization (PSO) and simulated annealing (SA). A support vector machine (SVM) with a radial basis function (RBF) kernel and a 10-fold cross-validation setup were employed for classification. The proposed approach demonstrated superior performance, achieving optimal accuracy with minimal feature utilization. When PSO selected five features, SVM exhibited accuracy, specificity, and sensitivity rates of 77%, 70%, and 83%, respectively. The identified features were as follows: (Mean of clustering coefficient, Mean of strength)/Radius/(Mean Eccentricity, and Modularity) from low/middle/high frequency bands of graph. The study highlights the efficacy of the proposed framework in identifying individuals at risk of AD development using a parsimonious feature set. This approach holds promise for advancing the precision of MCI to AD progression prediction, aiding in early diagnosis and intervention strategies.
Collapse
Affiliation(s)
- Jafar Zamani
- Department of Psychiatry and Behavioral Sciences, Stanford University, California, USA
| | | |
Collapse
|
6
|
Lai YLL, Hsu FT, Yeh SY, Kuo YT, Lin HH, Lin YC, Kuo LW, Chen CY, Liu HS. Atrophy of the cholinergic regions advances from early to late mild cognitive impairment. Neuroradiology 2024; 66:543-556. [PMID: 38240769 DOI: 10.1007/s00234-024-03290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE We investigated the volumetric changes in the components of the cholinergic pathway for patients with early mild cognitive impairment (EMCI) and those with late mild cognitive impairment (LMCI). The effect of patients' apolipoprotein 4 (APOE-ε4) allele status on the structural changes were analyzed. METHODS Structural magnetic resonance imaging data were collected. Patients' demographic information, plasma data, and validated global cognitive composite scores were included. Relevant features were extracted for constructing machine learning models to differentiate between EMCI (n = 312) and LMCI (n = 541) and predict patients' neurocognitive function. The data were analyzed primarily through one-way analysis of variance and two-way analysis of covariance. RESULTS Considerable differences were observed in cholinergic structural changes between patients with EMCI and LMCI. Cholinergic atrophy was more prominent in the LMCI cohort than in the EMCI cohort (P < 0.05 family-wise error corrected). APOE-ε4 differentially affected cholinergic atrophy in the LMCI and EMCI cohorts. For LMCI cohort, APOE-ε4 carriers exhibited increased brain atrophy (left amygdala: P = 0.001; right amygdala: P = 0.006, and right Ch123, P = 0.032). EMCI and LCMI patients showed distinctive associations of gray matter volumes in cholinergic regions with executive (R2 = 0.063 and 0.030 for EMCI and LMCI, respectively) and language (R2 = 0.095 and 0.042 for EMCI and LMCI, respectively) function. CONCLUSIONS Our data confirmed significant cholinergic atrophy differences between early and late stages of mild cognitive impairment. The impact of the APOE-ε4 allele on cholinergic atrophy varied between the LMCI and EMCI groups.
Collapse
Affiliation(s)
- Ying-Liang Larry Lai
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Yi Yeh
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tzu Kuo
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hui-Hsien Lin
- CT/MR Division, Rotary Trading CO., LTD, Taipei, Taiwan
| | - Yi-Chun Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Yu Chen
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Imaging, Taipei Medical University Hospital, Medical University, Taipei, Taiwan.
| | - Hua-Shan Liu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Lang J, Yang LZ, Li H. TSP-GNN: a novel neuropsychiatric disorder classification framework based on task-specific prior knowledge and graph neural network. Front Neurosci 2023; 17:1288882. [PMID: 38188031 PMCID: PMC10768162 DOI: 10.3389/fnins.2023.1288882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Neuropsychiatric disorder (ND) is often accompanied by abnormal functional connectivity (FC) patterns in specific task contexts. The distinctive task-specific FC patterns can provide valuable features for ND classification models using deep learning. However, most previous studies rely solely on the whole-brain FC matrix without considering the prior knowledge of task-specific FC patterns. Insight by the decoding studies on brain-behavior relationship, we develop TSP-GNN, which extracts task-specific prior (TSP) connectome patterns and employs graph neural network (GNN) for disease classification. TSP-GNN was validated using publicly available datasets. Our results demonstrate that different ND types show distinct task-specific connectivity patterns. Compared with the whole-brain node characteristics, utilizing task-specific nodes enhances the accuracy of ND classification. TSP-GNN comprises the first attempt to incorporate prior task-specific connectome patterns and the power of deep learning. This study elucidates the association between brain dysfunction and specific cognitive processes, offering valuable insights into the cognitive mechanism of neuropsychiatric disease.
Collapse
Affiliation(s)
- Jinwei Lang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
8
|
Bolla G, Berente DB, Andrássy A, Zsuffa JA, Hidasi Z, Csibri E, Csukly G, Kamondi A, Kiss M, Horvath AA. Comparison of the diagnostic accuracy of resting-state fMRI driven machine learning algorithms in the detection of mild cognitive impairment. Sci Rep 2023; 13:22285. [PMID: 38097674 PMCID: PMC10721802 DOI: 10.1038/s41598-023-49461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Mild cognitive impairment (MCI) is a potential therapeutic window in the prevention of dementia; however, automated detection of early cognitive deterioration is an unresolved issue. The aim of our study was to compare various classification approaches to differentiate MCI patients from healthy controls, based on rs-fMRI data, using machine learning (ML) algorithms. Own dataset (from two centers) and ADNI database were used during the analysis. Three fMRI parameters were applied in five feature selection algorithms: local correlation, intrinsic connectivity, and fractional amplitude of low frequency fluctuations. Support vector machine (SVM) and random forest (RF) methods were applied for classification. We achieved a relatively wide range of 78-87% accuracy for the various feature selection methods with SVM combining the three rs-fMRI parameters. In the ADNI datasets case we can also see even 90% accuracy scores. RF provided a more harmonized result among the feature selection algorithms in both datasets with 80-84% accuracy for our local and 74-82% for the ADNI database. Despite some lower performance metrics of some algorithms, most of the results were positive and could be seen in two unrelated datasets which increase the validity of our methods. Our results highlight the potential of ML-based fMRI applications for automated diagnostic techniques to recognize MCI patients.
Collapse
Affiliation(s)
- Gergo Bolla
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Dalida Borbala Berente
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Anita Andrássy
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Janos Andras Zsuffa
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Eva Csibri
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gabor Csukly
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Mate Kiss
- Siemens Healthcare, Budapest, Hungary
| | - Andras Attila Horvath
- Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Diao Y, Lanz B, Jelescu IO. Subject classification and cross-time prediction based on functional connectivity and white matter microstructure features in a rat model of Alzheimer's using machine learning. Alzheimers Res Ther 2023; 15:193. [PMID: 37936236 PMCID: PMC10629161 DOI: 10.1186/s13195-023-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The pathological process of Alzheimer's disease (AD) typically takes decades from onset to clinical symptoms. Early brain changes in AD include MRI-measurable features such as altered functional connectivity (FC) and white matter degeneration. The ability of these features to discriminate between subjects without a diagnosis, or their prognostic value, is however not established. METHODS The main trigger mechanism of AD is still debated, although impaired brain glucose metabolism is taking an increasingly central role. Here, we used a rat model of sporadic AD, based on impaired brain glucose metabolism induced by an intracerebroventricular injection of streptozotocin (STZ). We characterized alterations in FC and white matter microstructure longitudinally using functional and diffusion MRI. Those MRI-derived measures were used to classify STZ from control rats using machine learning, and the importance of each individual measure was quantified using explainable artificial intelligence methods. RESULTS Overall, combining all the FC and white matter metrics in an ensemble way was the best strategy to discriminate STZ rats, with a consistent accuracy over 0.85. However, the best accuracy early on was achieved using white matter microstructure features, and later on using FC. This suggests that consistent damage in white matter in the STZ group might precede FC. For cross-timepoint prediction, microstructure features also had the highest performance while, in contrast, that of FC was reduced by its dynamic pattern which shifted from early hyperconnectivity to late hypoconnectivity. CONCLUSIONS Our study highlights the MRI-derived measures that best discriminate STZ vs control rats early in the course of the disease, with potential translation to humans.
Collapse
Affiliation(s)
- Yujian Diao
- Animal Imaging and Technology Section, CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernard Lanz
- Animal Imaging and Technology Section, CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ileana Ozana Jelescu
- Animal Imaging and Technology Section, CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|