1
|
Sokolova DV, Solovieva AE, Zaretsky AM, Shelenga TV. The potential of the amaranth collection maintained at VIR in the context of global plant breeding and utilization trends. Vavilovskii Zhurnal Genet Selektsii 2024; 28:731-743. [PMID: 39722668 PMCID: PMC11667576 DOI: 10.18699/vjgb-24-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 12/28/2024] Open
Abstract
Amaranth is an ancient crop of the family Amaranthaceae, but it is fairly new to Russia. Its seeds and leaf biomass contain a high-quality gluten-free protein, fatty acids, squalene (a polyunsaturated hydrocarbon), flavonoids, vitamins, and minerals. A comprehensive study of amaranth, enhancement of its breeding, and development of new cultivars will contribute to food quality improvement through the use of plant raw materials enriched for wholesome and highly nutritious components. At present, selection and hybridization still remain the main amaranth breeding techniques. Meanwhile, mutation breeding and polyploidy have been successfully employed to increase its seed yield and protein content. The genes encoding amaranth proteins have been used to produce transgenic plants of potato, bread wheat, and maize. Despite the great potential of amaranth, little research has been dedicated to the study of its genomics, concentrating mainly on the identification of its species diversity. Targets of breeding practice for amaranth include such characteristics as large size and nonshattering of seeds, short stem, earliness, high yield, cold hardiness, synchronized maturation, resistance to pests and diseases, and high nutritional value, including the content and quality of protein, lipids, squalene, and bioactive compounds. A unique collection of amaranth maintained at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) currently incorporates 570 accessions from various countries. For 70 years it has been replenished with local varieties, commercial cultivars, and wild species supplied by collecting missions, research centers, botanical gardens, genebanks, and experimental breeding stations from all over the world. Long-standing studies have resulted in the formation of trait-specific groups of accessions, with high yields of seeds and leaf biomass, earliness, cold hardiness, high protein content in seeds and biomass, short stems, and resistance to seed shattering, earmarked for vegetable or ornamental purposes. The gene pool of amaranth preserved at VIR can provide unlimited opportunities for breeding and meet the needs of the country's population, enriching the human diet with ingredients produced from such a health-friendly and useful crop.
Collapse
Affiliation(s)
- D V Sokolova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A E Solovieva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A M Zaretsky
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - T V Shelenga
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
2
|
Nandi S, Varotariya K, Luhana S, Kyada AD, Saha A, Roy N, Sharma N, Rambabu D. GWAS for identification of genomic regions and candidate genes in vegetable crops. Funct Integr Genomics 2024; 24:203. [PMID: 39470821 DOI: 10.1007/s10142-024-01477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Genome-wide association Studies (GWAS), initially developed for human genetics, have been highly effective in plant research, particularly for vegetable crops. GWAS is a robust tool for identifying genes associated with key traits such as yield, nutritional value, disease resistance, adaptability, and bioactive compound biosynthesis. Unlike traditional methods, GWAS does not require prior biological knowledge and can accurately pinpoint loci, minimizing false positives. The process involves developing a diverse panel, rigorous phenotyping and genotyping, and sophisticated statistical analysis using various models and software tools. By scanning the entire genome, GWAS identifies specific loci or single nucleotide polymorphisms (SNPs) linked to target traits. When a causal SNP variant is not directly genotyped, GWAS identifies SNPs in linkage disequilibrium (LD) with the causal variant, mapping the genetic interval. The method begins with careful panel selection, phenotyping, and genotyping, controlling for environmental effects and utilizing Best Linear Unbiased Prediction (BLUP). High-correlation, high-heritability traits are prioritized. Various genotyping methods address confounders like population structure and kinship. Bonferroni correction (BC) prevents false positives, and significant associations are shown in Manhattan plots. Candidate genes are identified through LD analysis and fine mapping, followed by functional validation. GWAS offers critical insights for enhancing vegetable crop breeding efficiency and precision, driving breakthroughs through advanced methods.
Collapse
Affiliation(s)
- Swagata Nandi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kishor Varotariya
- Division of Vegetable Science, ICAR-Indian Institute of Horticultural Research, Bengaluru, 560089, India.
| | - Sohamkumar Luhana
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amitkumar D Kyada
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ankita Saha
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nabanita Roy
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neha Sharma
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Dharavath Rambabu
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Singh A, Maurya A, Rajkumar S, Singh AK, Bhardwaj R, Kaushik SK, Kumar S, Singh K, Singh GP, Singh R. Genome-Wide Comparative Analysis of Five Amaranthaceae Species Reveals a Large Amount of Repeat Content. PLANTS (BASEL, SWITZERLAND) 2024; 13:824. [PMID: 38592842 PMCID: PMC10975975 DOI: 10.3390/plants13060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Amaranthus is a genus of C4 dicotyledonous herbaceous plant species that are widely distributed in Asia, Africa, Australia, and Europe and are used as grain, vegetables, forages, and ornamental plants. Amaranth species have gained significant attention nowadays as potential sources of nutritious food and industrial products. In this study, we performed a comparative genome analysis of five amaranth species, namely, Amaranthus hypochondriacus, Amaranthus tuberculatus, Amaranthus hybridus, Amaranthus palmeri, and Amaranthus cruentus. The estimated repeat content ranged from 54.49% to 63.26% and was not correlated with the genome sizes. Out of the predicted repeat classes, the majority of repetitive sequences were Long Terminal Repeat (LTR) elements, which account for about 13.91% to 24.89% of all amaranth genomes. Phylogenetic analysis based on 406 single-copy orthologous genes revealed that A. hypochondriacus is most closely linked to A. hybridus and distantly related to A. cruentus. However, dioecious amaranth species, such as A. tuberculatus and A. palmeri, which belong to the subgenera Amaranthus Acnida, have formed their distinct clade. The comparative analysis of genomic data of amaranth species will be useful to identify and characterize agronomically important genes and their mechanisms of action. This will facilitate genomics-based, evolutionary studies, and breeding strategies to design faster, more precise, and predictable crop improvement programs.
Collapse
Affiliation(s)
- Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| | - Subramani Rajkumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| | - Amit Kumar Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (R.B.); (S.K.K.); (S.K.)
| | - Surinder Kumar Kaushik
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (R.B.); (S.K.K.); (S.K.)
| | - Sandeep Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (R.B.); (S.K.K.); (S.K.)
| | - Kuldeep Singh
- International Crop Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India;
| | | | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| |
Collapse
|
4
|
Anuradha, Kumari M, Zinta G, Chauhan R, Kumar A, Singh S, Singh S. Genetic resources and breeding approaches for improvement of amaranth ( Amaranthus spp.) and quinoa ( Chenopodium quinoa). Front Nutr 2023; 10:1129723. [PMID: 37554703 PMCID: PMC10405290 DOI: 10.3389/fnut.2023.1129723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Nowadays, the human population is more concerned about their diet and very specific in choosing their food sources to ensure a healthy lifestyle and avoid diseases. So people are shifting to more smart nutritious food choices other than regular cereals and staple foods they have been eating for a long time. Pseudocereals, especially, amaranth and quinoa, are important alternatives to traditional cereals due to comparatively higher nutrition, essential minerals, amino acids, and zero gluten. Both Amaranchaceae crops are low-input demanding and hardy plants tolerant to stress, drought, and salinity conditions. Thus, these crops may benefit developing countries that follow subsistence agriculture and have limited farming resources. However, these are underutilized orphan crops, and the efforts to improve them by reducing their saponin content remain ignored for a long time. Furthermore, these crops have very rich variability, but the progress of their genetic gain for getting high-yielding genotypes is slow. Realizing problems in traditional cereals and opting for crop diversification to tackle climate change, research should be focused on the genetic improvement for low saponin, nutritionally rich, tolerant to biotic and abiotic stresses, location-specific photoperiod, and high yielding varietal development of amaranth and quinoa to expand their commercial cultivation. The latest technologies that can accelerate the breeding to improve yield and quality in these crops are much behind and slower than the already established major crops of the world. We could learn from past mistakes and utilize the latest trends such as CRISPR/Cas, TILLING, and RNA interference (RNAi) technology to improve these pseudocereals genetically. Hence, the study reviewed important nutrition quality traits, morphological descriptors, their breeding behavior, available genetic resources, and breeding approaches for these crops to shed light on future breeding strategies to develop superior genotypes.
Collapse
Affiliation(s)
- Anuradha
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Manisha Kumari
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Gaurav Zinta
- Division of Biotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ramesh Chauhan
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ashok Kumar
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanatsujat Singh
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Satbeer Singh
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
5
|
Singh A, Mahato AK, Maurya A, Rajkumar S, Singh AK, Bhardwaj R, Kaushik SK, Kumar S, Gupta V, Singh K, Singh R. Amaranth Genomic Resource Database: an integrated database resource of Amaranth genes and genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1203855. [PMID: 37448872 PMCID: PMC10337998 DOI: 10.3389/fpls.2023.1203855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
Amaranth (Amaranthus L.) is native to Mexico and North America, where it was cultivated thousands of years ago, but now amaranth is grown worldwide. Amaranth is one of the most promising food crops with high nutritional value and belongs to the family Amaranthaceae. The high-quality genome assembly of cultivated amaranth species (A. hypochondriacus, A. cruentus) and wild/weedy species (A. tuberculatus, A. hybridus, and A. palmeri) has already been reported; therefore, we developed an Amaranth Genomic Resource Database (AGRDB) to provide access to all the genomic information such as genes, SSRs, SNPs, TFs, miRNAs, and transporters in one place. The AGRDB database contains functionally annotated gene information with their sequence details, genic as well as genomic SSRs with their three sets of primers, transcription factors classified into different families with their sequence information and annotation details, putative miRNAs with their family, sequences, and targeted gene details, transporter genes with their superfamily, trans-membrane domain details, and details of genic as well as nongenic SNPs with 3' and 5' flanking sequence information of five amaranth species. A database search can be performed using the gene ID, sequence ID, sequence motif, motif repeat, family name, annotation keyword, scaffold or chromosome numbers, etc. This resource also includes some useful tools, including JBrowse for the visualization of genes, SSRs, SNPs, and TFs on the respective amaranth genomes and BLAST search to perform a BLAST search of the user's query sequence against the amaranth genome as well as protein sequences. The AGRDB database will serve as a potential platform for genetic improvement and characterization of this futuristic crop. The AGRDB database will be accessible via the link: http://www.nbpgr.ernet.in:8080/AmaranthGRD/.
Collapse
Affiliation(s)
- Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. Rajkumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - A. K. Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. K. Kaushik
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sandeep Kumar
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Veena Gupta
- Division of Germplasm Conservation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- International Crop Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|