1
|
Bassetto M, Zaluski J, Li B, Zhang J, Badiee M, Kiser PD, Tochtrop GP. Tuning the Metabolic Stability of Visual Cycle Modulators through Modification of an RPE65 Recognition Motif. J Med Chem 2023; 66:8140-8158. [PMID: 37279401 PMCID: PMC10824489 DOI: 10.1021/acs.jmedchem.3c00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the eye, the isomerization of all-trans-retinal to 11-cis-retinal is accomplished by a metabolic pathway termed the visual cycle that is critical for vision. RPE65 is the essential trans-cis isomerase of this pathway. Emixustat, a retinoid-mimetic RPE65 inhibitor, was developed as a therapeutic visual cycle modulator and used for the treatment of retinopathies. However, pharmacokinetic liabilities limit its further development including: (1) metabolic deamination of the γ-amino-α-aryl alcohol, which mediates targeted RPE65 inhibition, and (2) unwanted long-lasting RPE65 inhibition. We sought to address these issues by more broadly defining the structure-activity relationships of the RPE65 recognition motif via the synthesis of a family of novel derivatives, which were tested in vitro and in vivo for RPE65 inhibition. We identified a potent secondary amine derivative with resistance to deamination and preserved RPE65 inhibitory activity. Our data provide insights into activity-preserving modifications of the emixustat molecule that can be employed to tune its pharmacological properties.
Collapse
Affiliation(s)
- Marco Bassetto
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Bowen Li
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jianye Zhang
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
| | - Mohsen Badiee
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, California 92697, United States
- Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Si Z, Zheng Y, Zhao J. The Role of Retinal Pigment Epithelial Cells in Age-Related Macular Degeneration: Phagocytosis and Autophagy. Biomolecules 2023; 13:901. [PMID: 37371481 DOI: 10.3390/biom13060901] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD) causes vision loss in the elderly population. Dry AMD leads to the formation of Drusen, while wet AMD is characterized by cell proliferation and choroidal angiogenesis. The retinal pigment epithelium (RPE) plays a key role in AMD pathogenesis. In particular, helioreceptor renewal depends on outer segment phagocytosis of RPE cells, while RPE autophagy can protect cells from oxidative stress damage. However, when the oxidative stress burden is too high and homeostasis is disturbed, the phagocytosis and autophagy functions of RPE become damaged, leading to AMD development and progression. Hence, characterizing the roles of RPE cell phagocytosis and autophagy in the pathogenesis of AMD can inform the development of potential therapeutic targets to prevent irreversible RPE and photoreceptor cell death, thus protecting against AMD.
Collapse
Affiliation(s)
- Zhibo Si
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|