1
|
Litvinov E, Litvinov A. The Relationship Between Periodontitis, Gingivitis, Smoking, Missing Teeth, Endodontic Infections, Aortic Aneurysm, and Coronary Artery Disease: The 10-Year Results of 25 Patients. Cureus 2024; 16:e73584. [PMID: 39677218 PMCID: PMC11639035 DOI: 10.7759/cureus.73584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Background Emerging research suggests a correlation between poor oral health and cardiovascular diseases (CVDs), with inflammation being a central mechanism. Periodontitis and gingivitis are chronic inflammatory diseases that can lead to systemic health issues if untreated. It has been indicated previously that endodontic infections and missing teeth may contribute to elevated cardiovascular risk, and smoking exacerbates both periodontal and cardiovascular conditions. This study expands upon existing research by examining both periodontal and endodontic health factors together and investigating smoking as a potentially amplifying factor. Poor periodontal health may contribute to systemic inflammation, which is a recognized risk factor for atherosclerosis and cardiovascular events. This study aims to evaluate these relationships over a decade, providing insights into the potential preventive impact of periodontal care on cardiovascular health. Materials and methods This 10-year retrospective study examines the complex relationships among periodontal health factors (including periodontitis, gingivitis, and missing teeth), endodontic infections, smoking, and cardiovascular conditions, specifically coronary artery disease (CAD) and aortic aneurysm. By analyzing data from 25 patients aged 45-75, the study aims to assess whether these oral health indicators correlate with increased cardiovascular risks. The study's methodology included comprehensive dental and cardiovascular evaluations for each patient, with baseline data collected at the study's inception and follow-ups over the next decade. Oral health assessments documented the severity of periodontal diseases and recorded the presence of endodontic infections. Cardiovascular evaluations were conducted to establish the incidence and progression of CAD and aortic aneurysm, while lifestyle factors, particularly smoking, were noted as significant contributors. This approach allowed for an in-depth exploration of the possible causal pathways linking oral health to cardiovascular outcomes. Results Results demonstrated that severe periodontitis, high numbers of missing teeth, and the presence of endodontic infections were significantly associated with higher incidences of CAD and aortic aneurysm. Smoking, as expected, acted as a compounding factor, intensifying the risk of cardiovascular outcomes in patients with poor oral health. Interaction terms further highlighted how smoking combined with advanced periodontitis notably increased CAD risk. The findings align with the hypothesis that severe periodontal disease and endodontic infections contribute to cardiovascular risk, especially among smokers. These results indicate that periodontal disease may serve as a marker for systemic inflammation, which has far-reaching effects beyond oral health alone. Conclusion The 10-year study showed a strong association between periodontal disease, smoking, hypertension, periodontitis and CVDs. This study underscores the importance of maintaining good oral health and cessation of smoking to mitigate cardiovascular risk. The results advocate for a multidisciplinary approach to patient care, integrating dental health with broader cardiovascular risk management. Future research is recommended to confirm these findings in larger, more diverse cohorts and to explore further the underlying mechanisms connecting oral infections and systemic inflammation with cardiovascular health.
Collapse
|
2
|
Nemes-Nikodém É, Gyurok GP, Dunai ZA, Makra N, Hofmeister B, Szabó D, Sótonyi P, Hidi L, Szappanos Á, Kovács G, Ostorházi E. Relationship between Gut, Blood, Aneurysm Wall and Thrombus Microbiome in Abdominal Aortic Aneurysm Patients. Int J Mol Sci 2024; 25:8844. [PMID: 39201529 PMCID: PMC11354423 DOI: 10.3390/ijms25168844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Previous research confirmed gut dysbiosis and translocation of selected intestinal bacteria into the vessel wall in abdominal aortic aneurysm patients. We studied the stool, blood, thrombus and aneurysm microbiomes of 21 abdominal aortic aneurysm patients using 16S rRNA sequencing. Our goals were to determine: 1. whether the microbiome characteristic of an aneurysm differs from that of a healthy vessel, 2. whether bacteria detectable in the aneurysm are translocated from the gut through the bloodstream, 3. whether the enzymatic activity of the aneurysm microbiome can contribute to the destruction of the vessel wall. The abundance of Acinetobacter, Burkholderia, Escherichia, and Sphingobium in the aneurysm samples was significantly higher than that in the microbiome of healthy vessels, but only a part of these bacteria can come from the intestine via the blood. Environmental bacteria due to the oral cavity or skin penetration route, such as Acinetobacter, Sphingobium, Enhydrobacter, and Aquabacterium, were present in the thrombus and aneurysm with a significantly higher abundance compared to the blood. Among the enzymes of the microbiome associated with the healthy vessel wall, Iron-chelate-transporting ATPase and Polar-amino-acid-transporting ATPase have protective effects. In addition, bacterial Peptidylprolyl isomerase activity found in the aneurysm has an aggravating effect on the formation of aneurysm.
Collapse
Affiliation(s)
- Éva Nemes-Nikodém
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
| | - Gergő Péter Gyurok
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
| | | | - Nóra Makra
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
| | - Bálint Hofmeister
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
| | - Dóra Szabó
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary;
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
| | - László Hidi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
| | - Ágnes Szappanos
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
- Department of Rheumatology and Clinical Immunology, Semmelweis University, 1023 Budapest, Hungary
| | - Gergely Kovács
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (G.P.G.); (P.S.); (L.H.); (Á.S.)
| | - Eszter Ostorházi
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (É.N.-N.); (N.M.); (B.H.); (D.S.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
3
|
Lin WZ, Chen BY, Qiu P, Zhou LJ, Li YL, Du LJ, Liu Y, Wang YL, Zhu H, Wu XY, Liu X, Duan SZ, Zhu YQ. Altered salivary microbiota profile in patients with abdominal aortic aneurysm. Heliyon 2023; 9:e23040. [PMID: 38144289 PMCID: PMC10746442 DOI: 10.1016/j.heliyon.2023.e23040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Evidence suggests that the DNA of oral pathogens is detectable in the dilated aortic tissue of abdominal aortic aneurysm (AAA), one of the most fatal cardiovascular diseases. However, the association between oral microbial homeostasis and aneurysm formation remains largely unknown. In this study, a cohort of individuals, including 53 AAA patients and 30 control participants (CTL), was recruited for salivary microbiota investigation by 16S rRNA gene sequencing and bioinformatics analysis. Salivary microbial diversity was decreased in AAA compared with CTL, and the microbial structures were significantly separated between the two groups. Additionally, significant taxonomic and functional changes in the salivary microbiota of AAA participants were observed. The genera Streptococcus and Gemella were remarkably enriched, while Selenomonas, Leptotrichia, Lautropia and Corynebacterium were significantly depleted in AAA. Co-occurrence network analysis showed decreased potential interactions among the differentially abundant microbial genera in AAA. A machine-learning model predicted AAA using the combination of 5 genera and 14 differentially enriched functional pathways, which could distinguish AAA from CTL with an area under the receiver-operating curve of 90.3 %. Finally, 16 genera were found to be significantly positively correlated with the morphological parameters of AAA. Our study is the first to show that AAA patients exhibit oral microbial dysbiosis, which has high predictive power for AAA, and the over-representation of specific salivary bacteria may be associated with AAA disease progression. Further studies are needed to better understand the function of putative oral bacteria in the etiopathogenesis of AAA. Importance Host microbial dysbiosis has recently been linked to AAA as a possible etiology. To our knowledge, studies of the oral microbiota and aneurysms remain scarce, although previous studies have indicated that the DNA of some oral pathogens is detectable in aneurysms by PCR method. We take this field one step further by investigating the oral microbiota composition of AAA patients against control participants via high-throughput sequencing technologies and unveiling the potential microbial biomarker associated with AAA formation. Our study will provide new insights into AAA etiology, treatment and prevention from a microecological perspective and highlight the effects of oral microbiota on vascular health.
Collapse
Affiliation(s)
- Wen-Zhen Lin
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Jun Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiao-Yu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ya-Qin Zhu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
4
|
Shang J, Liu H, Zheng Y, Zhang Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front Physiol 2023; 14:1210449. [PMID: 37501927 PMCID: PMC10369007 DOI: 10.3389/fphys.2023.1210449] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Periodontitis is a common inflammatory disease. It is characterized by destruction of the supporting structures of the teeth and could lead to tooth loss and systemic inflammation. Bacteria in inflamed gingival tissue and virulence factors are capable of entering the bloodstream to induce systemic inflammatory response, thus influencing the pathological process of many diseases, such as cardiovascular diseases, diabetes, chronic kidney disease, as well as liver injury. An increasing body of evidence show the complex interplay between oxidative stress and inflammation in disease pathogenesis. When periodontitis occurs, increased reactive oxygen species accumulation leads to oxidative stress. Oxidative stress contributes to major cellular components damage, including DNA, proteins, and lipids. In this article, the focus will be on oxidative stress in periodontal disease, the relationship between periodontitis and systemic inflammation, and the impact of periodontal therapy on oxidative stress parameters.
Collapse
Affiliation(s)
- Jiaxin Shang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Haifeng Liu
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| |
Collapse
|
5
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
6
|
Uddin MN, Emran TB. Prevention of Progression and Remission in Public Health Sectors: Bangladesh Perspectives. ATLANTIS HIGHLIGHTS IN CHEMISTRY AND PHARMACEUTICAL SCIENCES 2023:131-150. [DOI: 10.2991/978-94-6463-130-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|