1
|
Rodenhouse A, Smolyak G, Adjei‐Sowah E, Adhikari N, Muscat S, Okutani T, Ketonis C, Nichols AEC, Kottmann RM, Loiselle AE. Ogerin induced activation of Gpr68 alters tendon healing. FASEB Bioadv 2025; 7:e70008. [PMID: 40330429 PMCID: PMC12050953 DOI: 10.1096/fba.2024-00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
Satisfactory outcomes after acute tendon injuries are hampered by a fibrotic healing response. As such, modulation of extracellular matrix deposition and remodeling represents an important intervention point to improve healing. During fibrosis, matrix is deposited and remodeled by activated fibroblasts and/or myofibroblasts. Recent work has demonstrated that Ogerin, a positive allosteric modulator of the orphan proton-sensing GPCR, GPR68, can modulate fibroblast ↔ myofibroblast dynamics in multiple fibroblast populations, including blunting myofibroblast differentiation and facilitating reversion of mature myofibroblasts to a basal fibroblast state in vitro. In the present study, we tested the ability of Ogerin to modulate tendon fibroblast ↔ myofibroblast behavior in vitro and in vivo. Consistent with prior work, Ogerin can both blunt TGF-β induced tenocyte → myofibroblast differentiation and partially revert mature myofibroblasts to a basal tenocyte state. However, Ogerin treatment from days 8-12 after tendon repair surgery did not inhibit myofibroblast differentiation, and Ogerin treatment from post-operative days 24-28 did not induce myofibroblast reversion. Moreover, while we expected Ogerin treatment from days 8-12 to impair healing due to blunted extracellular matrix formation, Ogerin treatment improved tendon mechanical properties and altered cell transcriptional profiles and communication patterns in a way that suggests accelerated remodeling and resolution of the repair response, identifying Ogerin as a novel therapeutic approach to improve the tendon healing process.
Collapse
Affiliation(s)
- Andrew Rodenhouse
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical PerformanceUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Gilbert Smolyak
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical PerformanceUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Emmanuela Adjei‐Sowah
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical PerformanceUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Neeta Adhikari
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical PerformanceUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Samantha Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical PerformanceUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Takuma Okutani
- Department of MedicineUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Constantinos Ketonis
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical PerformanceUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Anne E. C. Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical PerformanceUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Robert M. Kottmann
- Department of MedicineUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical PerformanceUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
2
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
3
|
Li MS, Wang XH, Wang H. Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation. Curr Med Sci 2024; 44:475-484. [PMID: 38748372 DOI: 10.1007/s11596-024-2872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
Collapse
Affiliation(s)
- Min-Shan Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Xiang-Hong Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Heng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China.
| |
Collapse
|
4
|
Glitsch MD. Recent advances in acid sensing by G protein coupled receptors. Pflugers Arch 2024; 476:445-455. [PMID: 38340167 PMCID: PMC11006784 DOI: 10.1007/s00424-024-02919-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Changes in extracellular proton concentrations occur in a variety of tissues over a range of timescales under physiological conditions and also accompany virtually all pathologies, notably cancers, stroke, inflammation and trauma. Proton-activated, G protein coupled receptors are already partially active at physiological extracellular proton concentrations and their activity increases with rising proton concentrations. Their ability to monitor and report changes in extracellular proton concentrations and hence extracellular pH appears to be involved in a variety of processes, and it is likely to mirror and in some cases promote disease progression. Unsurprisingly, therefore, these pH-sensing receptors (pHR) receive increasing attention from researchers working in an expanding range of research areas, from cellular neurophysiology to systemic inflammatory processes. This review is looking at progress made in the field of pHRs over the past few years and also highlights outstanding issues.
Collapse
Affiliation(s)
- Maike D Glitsch
- Medical School Hamburg, Am Sandtorkai 1, 20457, Hamburg, Germany.
| |
Collapse
|
5
|
Nho RS, Rice C, Prasad J, Bone H, Farkas L, Rojas M, Horowitz JC. Persistent hypoxia promotes myofibroblast differentiation via GPR-81 and differential regulation of LDH isoenzymes in normal and idiopathic pulmonary fibrosis fibroblasts. Physiol Rep 2023; 11:e15759. [PMID: 37653539 PMCID: PMC10471601 DOI: 10.14814/phy2.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 09/02/2023] Open
Abstract
Hypoxia, a state of insufficient oxygen availability, promotes cellular lactate production. Lactate levels are increased in lungs from patients with idiopathic pulmonary fibrosis (IPF), a disease characterized by excessive scar formation, and lactate is implicated in the pathobiology of lung fibrosis. However, the mechanisms underlying the effects of hypoxia and lactate on fibroblast phenotype are poorly understood. We exposed normal and IPF lung fibroblasts to persistent hypoxia and found that increased lactate generation by IPF fibroblasts was driven by the FoxM1-dependent increase of lactate dehydrogenase A (LDHA) coupled with decreased LDHB that was not observed in normal lung fibroblasts. Importantly, hypoxia reduced α-smooth muscle actin (α-SMA) expression in normal fibroblasts but had no significant impact on this marker of differentiation in IPF fibroblasts. Treatment of control and IPF fibroblasts with TGF-β under hypoxic conditions did not significantly change LDHA or LDHB expression. Surprisingly, lactate directly induced the differentiation of normal, but not IPF fibroblasts under hypoxic conditions. Moreover, while expression of GPR-81, a G-protein-coupled receptor that binds extracellular lactate, was increased by hypoxia in both normal and IPF fibroblasts, its inhibition or silencing only suppressed lactate-mediated differentiation in normal fibroblasts. These studies show that hypoxia differentially affects normal and fibrotic fibroblasts, promoting increased lactate generation by IPF fibroblasts through regulation of the LDHA/LDHB ratio and promoting normal lung fibroblast responsiveness to lactate through GPR-81. This supports a novel paradigm in which lactate may serve as a paracrine intercellular signal in oxygen-deficient microenvironments.
Collapse
Affiliation(s)
- Richard S. Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Cami Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Jayendra Prasad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Hannah Bone
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Jeffrey C. Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|