1
|
Gkikoudi A, Manda G, Beinke C, Giesen U, Al-Qaaod A, Dragnea EM, Dobre M, Neagoe IV, Sangsuwan T, Haghdoost S, Vasilopoulos SN, Triantopoulou S, Georgakopoulou A, Tremi I, Koutsoudaki PN, Havaki S, Gorgoulis VG, Kokkoris M, Krasniqi F, Terzoudi GI, Georgakilas AG. Synergistic Effects of UVB and Ionizing Radiation on Human Non-Malignant Cells: Implications for Ozone Depletion and Secondary Cosmic Radiation Exposure. Biomolecules 2025; 15:536. [PMID: 40305266 PMCID: PMC12024869 DOI: 10.3390/biom15040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
The ozone layer in the Earth's atmosphere filters solar radiation and limits the unwanted effects on humans. A depletion of this ozone shield would permit hazardous levels of UV solar radiation, especially in the UVB range, to bombard Earth's surface, resulting in potentially significant effects on human health. The concern for these adverse effects intensifies if we consider that the UVB solar radiation is combined with secondary cosmic radiation (SCR) components, such as protons and muons, as well as terrestrial gamma rays. This research aims to delve into the intricate interplay between cosmic and solar radiation on earth at the cellular level, focusing on their synergistic effects on human cell biology. Through a multidisciplinary approach integrating radiobiology and physics, we aim to explore key aspects of biological responses, including cell viability, DNA damage, stress gene expression, and finally, genomic instability. To assess the impact of the combined exposure, normal i.e., non-malignant human cells (skin fibroblasts, keratinocytes, monocytes, and lymphocytes) were exposed to high-energy protons or gamma rays in combination with UVB. Cellular molecular and cytogenetic biomarkers of radiation exposure, such as DNA damage (γH2AΧ histone protein and dicentric chromosomes), as well as the expression pattern of various stress genes, were analyzed. In parallel, the MTS reduction and lactate dehydrogenase assays were used as indicators of cell viability, proliferation, and cytotoxicity. Results reveal remaining DNA damage for the co-exposed samples compared to samples exposed to only one type of radiation in all types of cells, accompanied by increased genomic instability and distinct stress gene expression patterns detected at 24-48 h post-exposure. Understanding the impact of combined radiation exposures is crucial for assessing the health risks posed to humans if the ozone layer is partially depleted, with structural and functional damages inflicted by combined cosmic and UVB exposure.
Collapse
Affiliation(s)
- Angeliki Gkikoudi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (S.T.); (G.I.T.)
| | - Gina Manda
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology, University of Ulm, Neuherbergstraβe 11, 80937 Munich, Germany;
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany (A.A.-Q.); (F.K.)
| | - Amer Al-Qaaod
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany (A.A.-Q.); (F.K.)
| | - Elena-Mihaela Dragnea
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Maria Dobre
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Ionela Victoria Neagoe
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Traimate Sangsuwan
- ABTE/ToxEMAC Laboratory, University of Caen Normandy, F-14050 Caen, France; (T.S.); (S.H.)
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Siamak Haghdoost
- ABTE/ToxEMAC Laboratory, University of Caen Normandy, F-14050 Caen, France; (T.S.); (S.H.)
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Spyridon N. Vasilopoulos
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
| | - Sotiria Triantopoulou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (S.T.); (G.I.T.)
| | - Anna Georgakopoulou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
| | - Ioanna Tremi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
| | - Paraskevi N. Koutsoudaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD2 1SG, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Michael Kokkoris
- Group of Nuclear Physics, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece;
| | - Faton Krasniqi
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany (A.A.-Q.); (F.K.)
| | - Georgia I. Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (S.T.); (G.I.T.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
| |
Collapse
|
2
|
Liu Q, Sun S, Zhou C, Xu H. Comprehensive analysis of the prognostic, immunological, and diagnostic roles of SIRT1 in pan-cancer and its validation in KIRC. Front Immunol 2025; 15:1501867. [PMID: 39845948 PMCID: PMC11751020 DOI: 10.3389/fimmu.2024.1501867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Disturbances in DNA damage repair may lead to cancer. SIRT1, an NAD+-dependent deacetylase, plays a crucial role in maintaining cellular homeostasis through the regulation of processes such as histone posttranslational modifications, DNA repair, and cellular metabolism. However, a comprehensive exploration of SIRT1's involvement in pan-cancer remains lacking. Our study aimed to analyze the role of SIRT1 in pan-cancer to gain a more comprehensive understanding of its role in multiple malignancies. Methods We systematically examined the role of SIRT1 in pan-cancer by analyzing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Various tools, including R, Cytoscape, HPA, Archs4, TISIDB, cBioPortal, STRING, GSCALite, and CancerSEA, were used to integrate and analyze SIRT1 gene expression, prognosis, protein interactions, signaling pathways, immune infiltration, and other relevant information. Furthermore, we validated the differential expression of SIRT1 in normal human kidney cells and kidney cancer cell lines via experimental verification. Results SIRT1 expression was significantly reduced in various cancers and was different across molecular and immune subtypes. SIRT1 is intricately linked to numerous cancer pathways. In most cancer types, increased SIRT1 expression is positively associated with eosinophils, helper T cells, central memory T cells, effector memory T cells, γδ T cells, and Th2 cells. SIRT1 expression is significantly correlated with immune regulatory factors across various cancer types. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot (WB) analyses confirmed that SIRT1 is differentially expressed in kidney renal clear cell carcinoma (KIRC). Conclusions Using an integrative approach involving bioinformatics analysis and experimental validation, we clarified the potential roles and mechanisms of SIRT1 in pan-cancer, providing a theoretical basis for the development of SIRT1-targeted therapies in clinical applications.
Collapse
Affiliation(s)
- Qi Liu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Songxian Sun
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Houxi Xu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Rivera-Rivas LA, Florencio-Martínez LE, Romero-Meza G, Ortega-Ortiz RC, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Transcriptome and proteome changes triggered by overexpression of the transcriptional regulator Maf1 in the human pathogen Leishmania major. FASEB J 2024; 38:e23888. [PMID: 39157983 DOI: 10.1096/fj.202400636rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Maf1, originally described as a repressor of RNA polymerase III (RNAP III) transcription in yeast, participates in multiple functions across eukaryotes. However, the knowledge about Maf1 in protozoan parasites is scarce. To initiate the study of Maf1 in Leishmania major, we generated a cell line that overexpresses this protein. Overexpression of Maf1 led to a significant reduction in the abundance of tRNAs, 5S rRNA, and U4 snRNA, demonstrating that Maf1 regulates RNAP III activity in L. major. To further explore the roles played by Maf1 in this microorganism, global transcriptomic and proteomic changes due to Maf1 overexpression were determined using RNA-sequencing and label-free quantitative mass spectrometry. Compared to wild-type cells, differential expression was observed for 1082 transcripts (615 down-regulated and 467 up-regulated) and 205 proteins (132 down-regulated and 73 up-regulated) in the overexpressing cells. A correlation of 44% was found between transcriptomic and proteomic results. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins are mainly involved in transcription, cell cycle regulation, lipid metabolism and transport, ribosomal biogenesis, carbohydrate metabolism, autophagy, and cytoskeleton modification. Thus, our results suggest the involvement of Maf1 in the regulation of all these processes in L. major, as reported in other species, indicating that the functions performed by Maf1 were established early in eukaryotic evolution. Notably, our data also suggest the participation of L. major Maf1 in mRNA post-transcriptional control, a role that, to the best of our knowledge, has not been described in other organisms.
Collapse
Affiliation(s)
- Luis A Rivera-Rivas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Gabriela Romero-Meza
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Roberto C Ortega-Ortiz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
4
|
Thériault S, Li Z, Abner E, Luan J, Manikpurage HD, Houessou U, Zamani P, Briend M, Boudreau DK, Gaudreault N, Frenette L, Argaud D, Dahmene M, Dagenais F, Clavel MA, Pibarot P, Arsenault BJ, Boekholdt SM, Wareham NJ, Esko T, Mathieu P, Bossé Y. Integrative genomic analyses identify candidate causal genes for calcific aortic valve stenosis involving tissue-specific regulation. Nat Commun 2024; 15:2407. [PMID: 38494474 PMCID: PMC10944835 DOI: 10.1038/s41467-024-46639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
There is currently no medical therapy to prevent calcific aortic valve stenosis (CAVS). Multi-omics approaches could lead to the identification of novel molecular targets. Here, we perform a genome-wide association study (GWAS) meta-analysis including 14,819 cases among 941,863 participants of European ancestry. We report 32 genomic loci, among which 20 are novel. RNA sequencing of 500 human aortic valves highlights an enrichment in expression regulation at these loci and prioritizes candidate causal genes. Homozygous genotype for a risk variant near TWIST1, a gene involved in endothelial-mesenchymal transition, has a profound impact on aortic valve transcriptomics. We identify five genes outside of GWAS loci by combining a transcriptome-wide association study, colocalization, and Mendelian randomization analyses. Using cross-phenotype and phenome-wide approaches, we highlight the role of circulating lipoproteins, blood pressure and inflammation in the disease process. Our findings pave the way for the development of novel therapies for CAVS.
Collapse
Affiliation(s)
- Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.
| | - Zhonglin Li
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Hasanga D Manikpurage
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Ursula Houessou
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Pardis Zamani
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Mewen Briend
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Dominique K Boudreau
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Nathalie Gaudreault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Lily Frenette
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Déborah Argaud
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Manel Dahmene
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - François Dagenais
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Philippe Pibarot
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Benoit J Arsenault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
5
|
Barroso-Chinea P, Salas-Hernández J, Cruz-Muros I, López-Fernández J, Freire R, Afonso-Oramas D. Expression of RAD9B in the mesostriatal system of rats and humans: Overexpression in a 6-OHDA rat model of Parkinson's disease. Ann Anat 2023; 250:152135. [PMID: 37460044 DOI: 10.1016/j.aanat.2023.152135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder that affects primarily the dopaminergic (DAergic) neurons of the mesostriatal system, among other nuclei of the brain. Although it is considered an idiopathic disease, oxidative stress is believed to be involved in DAergic neuron death and therefore plays an important role in the onset and development of the disease. RAD9B is a paralog of the RAD9 checkpoint, sharing some similar functions related to DNA damage resistance and apoptosis, as well as the ability to form 9-1-1 heterotrimers with RAD1 and HUS1. METHODS In addition to immunohistochemistry, immunofluorescence and Western-blot analysis, we implemented Quantitative RT-PCR and in situ hybridization techniques. RESULTS We demonstrated RAD9B expression in rat and human mesencephalic DAergic cells using specific markers. Additionally, we observed significant overexpression of RAD9B mRNA (p<0.01) and protein (p<0.01) in the midbrain 48 h after inducing damage with 150 µg of 6-hydroxydopamine (6-OHDA) injected in a rat model of PD. Regarding protein expression, the increased levels were observed in neurons of the mesostriatal system and returned to normal 5 days post-injury. CONCLUSIONS This response to a neurotoxin, known to produce oxidative stress specifically on DAergic neurons indicates the potential importance of RAD9B in this highly vulnerable population to cell death. In this model, RAD9B function appears to provide neuroprotection, as the induced lesion resulted in only mild degeneration. This observation highlights the potential of RAD9B checkpoint protein as a valuable target for future therapeutic interventions aimed at promoting neuroprotection.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias (IUNE). Universidad de La Laguna, Tenerife, Spain.
| | - Josmar Salas-Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Jonathan López-Fernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Raimundo Freire
- Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias (IUNE). Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
6
|
Serban RM, Niculae D, Manda G, Neagoe I, Dobre M, Niculae DA, Temelie M, Mustăciosu C, Leonte RA, Chilug LE, Cornoiu MR, Cocioabă D, Stan M, Dinischiotu A. Modifications in cellular viability, DNA damage and stress responses inflicted in cancer cells by copper-64 ions. Front Med (Lausanne) 2023; 10:1197846. [PMID: 37415761 PMCID: PMC10320858 DOI: 10.3389/fmed.2023.1197846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Due to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged β- particles, 64Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The in vitro study aimed to investigate the biological and molecular background of 64CuCl2 therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL 64CuCl2. Radioisotope uptake and retention were assessed, and cell viability/death, DNA damage, oxidative stress, and the expression of 84 stress genes were investigated at various time points after [64Cu]CuCl2 addition. All the investigated cells incorporated 64Cu ions similarly, independent of their tumoral or normal status, but their fate after exposure to [64Cu]CuCl2 was cell-dependent. The most striking cytotoxic effects of the radioisotope were registered in colon carcinoma HCT116 cells, for which a substantial decrease in the number of metabolically active cells, and an increased DNA damage and oxidative stress were registered. The stress gene expression study highlighted the activation of both death and repair mechanisms in these cells, related to extrinsic apoptosis, necrosis/necroptosis or autophagy, and cell cycle arrest, nucleotide excision repair, antioxidant, and hypoxic responses, respectively. The in vitro study indicated that 40 MBq/mL [64Cu]CuCl2 delivers a therapeutic effect in human colon carcinoma, but its use is limited by harmful, yet lower effects on normal fibroblasts. The exposure of tumor cells to 20 MBq/mL [64Cu]CuCl2, might be used for a softer approach aiming for a lower radiotoxicity in normal fibroblasts as compared to tumor cells. This radioactive concentration was able to induce a persistent decrease in the number of metabolically active cells, accompanied by DNA damage and oxidative stress, associated with significant changes in stress gene expression in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Radu M. Serban
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dana Niculae
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Gina Manda
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Ionela Neagoe
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Maria Dobre
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Dragoș A. Niculae
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Mihaela Temelie
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Cosmin Mustăciosu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Radu A. Leonte
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Livia E. Chilug
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Maria R. Cornoiu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Applied Chemistry and Materials Science, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Bucharest, Romania
| | - Diana Cocioabă
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Physics, Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Miruna Stan
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | |
Collapse
|