1
|
de Haro C, Santos-Pulpón V, Telías I, Xifra-Porxas A, Subirà C, Batlle M, Fernández R, Murias G, Albaiceta GM, Fernández-Gonzalo S, Godoy-González M, Gomà G, Nogales S, Roca O, Pham T, López-Aguilar J, Magrans R, Brochard L, Blanch L, Sarlabous L. Flow starvation during square-flow assisted ventilation detected by supervised deep learning techniques. Crit Care 2024; 28:75. [PMID: 38486268 PMCID: PMC10938655 DOI: 10.1186/s13054-024-04845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Flow starvation is a type of patient-ventilator asynchrony that occurs when gas delivery does not fully meet the patients' ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdiagnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence algorithm for identifying airway pressure deformation during square-flow assisted ventilation and patient-triggered breaths. METHODS Multicenter, observational study. Adult critically ill patients under mechanical ventilation > 24 h on square-flow assisted ventilation were included. As the reference, 5 intensive care experts classified airway pressure deformation severity. Convolutional neural network and recurrent neural network models were trained and evaluated using accuracy, precision, recall and F1 score. In a subgroup of patients with esophageal pressure measurement (ΔPes), we analyzed the association between the intensity of the inspiratory effort and the airway pressure deformation. RESULTS 6428 breaths from 28 patients were analyzed, 42% were classified as having normal-mild, 23% moderate, and 34% severe airway pressure deformation. The accuracy of recurrent neural network algorithm and convolutional neural network were 87.9% [87.6-88.3], and 86.8% [86.6-87.4], respectively. Double triggering appeared in 8.8% of breaths, always in the presence of severe airway pressure deformation. The subgroup analysis demonstrated that 74.4% of breaths classified as severe airway pressure deformation had a ΔPes > 10 cmH2O and 37.2% a ΔPes > 15 cmH2O. CONCLUSIONS Recurrent neural network model appears excellent to identify airway pressure deformation due to flow starvation. It could be used as a real-time, 24-h bedside monitoring tool to minimize unrecognized periods of inappropriate patient-ventilator interaction.
Collapse
Affiliation(s)
- Candelaria de Haro
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació I Innovació Parc Taulí (I3PT-CERCA),, Carrer Parc Taulí, 1, 08208, Sabadell, Spain.
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Verónica Santos-Pulpón
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Irene Telías
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, ON, Canada
| | - Alba Xifra-Porxas
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Carles Subirà
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critial Care Department, Althaia Xarxa Assistencial Universtaria de Manresa, Manresa, Spain
- IRIS - Catalunya Central I Grup de Recerca de Malalt Crític, Manresa, Spain
| | - Montserrat Batlle
- Critial Care Department, Althaia Xarxa Assistencial Universtaria de Manresa, Manresa, Spain
- IRIS - Catalunya Central I Grup de Recerca de Malalt Crític, Manresa, Spain
| | - Rafael Fernández
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critial Care Department, Althaia Xarxa Assistencial Universtaria de Manresa, Manresa, Spain
- IRIS - Catalunya Central I Grup de Recerca de Malalt Crític, Manresa, Spain
| | - Gastón Murias
- Critical Care Department, Hospital Británico, Buenos Aires, Argentina
| | - Guillermo M Albaiceta
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias. Universidad de Oviedo, Oviedo, Spain
| | - Sol Fernández-Gonzalo
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Gemma Gomà
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació I Innovació Parc Taulí (I3PT-CERCA),, Carrer Parc Taulí, 1, 08208, Sabadell, Spain
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Nogales
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació I Innovació Parc Taulí (I3PT-CERCA),, Carrer Parc Taulí, 1, 08208, Sabadell, Spain
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Roca
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació I Innovació Parc Taulí (I3PT-CERCA),, Carrer Parc Taulí, 1, 08208, Sabadell, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Tai Pham
- Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, DMU CORREVE, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm U1018, Equipe d'Epidémiologie Respiratoire Intégrative, Center de Recherche en Epidémiologie et Santé Des Populations, Villejuif, France
| | - Josefina López-Aguilar
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | | | - Laurent Brochard
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Lluís Blanch
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació I Innovació Parc Taulí (I3PT-CERCA),, Carrer Parc Taulí, 1, 08208, Sabadell, Spain
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonardo Sarlabous
- Centro Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| |
Collapse
|