1
|
Arvind A, Sreelekshmi S, Dubey N. Genetic, Epigenetic, and Hormonal Regulation of Stress Phenotypes in Major Depressive Disorder: From Maladaptation to Resilience. Cell Mol Neurobiol 2025; 45:29. [PMID: 40138049 PMCID: PMC11947386 DOI: 10.1007/s10571-025-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Major Depressive Disorder (MDD) is a complex psychiatric disorder with varied molecular mechanisms underlying its aetiology, diagnosis, and treatment. This review explores the crucial roles of stress, genetics, epigenetics, and hormones in shaping susceptibility and resilience to mood disorders. We discuss how acute stress can be beneficial, while prolonged stress disrupts brain function, leading to MDD. The review also highlights the significance of various animal models in understanding depression pathophysiology, including zebrafish, mice, and rats, which exhibit distinct sex differences in stress responses. Furthermore, we delve into the molecular bases of susceptible and resilient phenotypes, focusing on genetic aspects such as gene polymorphisms, mutations, and telomere length alterations. The review also examines epigenetic aspects including DNA methylation, histone acetylation and deacetylation, histone methylation and HMTs, and miRNA, which contribute to the development of MDD. Additionally, we explore the role of hormones such as estrogen, progesterone, and prolactin in modulating stress responses and influencing MDD susceptibility and resilience. Finally, we discuss the clinical implications of these findings, including recent clinical methods for determining MDD susceptibility and resiliency phenotypes. By consolidating the current knowledge and insights, this review aims to provide a comprehensive understanding of the molecular basis of susceptibility and resilience in mood disorders, contributing to the ongoing efforts in combating this debilitating disorder.
Collapse
Affiliation(s)
- Anushka Arvind
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, Telangana, India
| | - S Sreelekshmi
- Endocrinology Unit, Department of Zoology, Madras Christian College, East Tambaram, Chennai, 600059, Tamil Nadu, India
| | - Neelima Dubey
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
2
|
Selby JV, Maas CCHM, Fireman BH, Kent DM. Potential clinical impact of predictive modeling of heterogeneous treatment effects: scoping review of the impact of the PATH Statement. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.05.06.24306774. [PMID: 38766150 PMCID: PMC11100853 DOI: 10.1101/2024.05.06.24306774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background The PATH Statement (2020) proposed predictive modeling for examining heterogeneity in treatment effects (HTE) in randomized clinical trials (RCTs). It distinguished risk modeling, which develops a multivariable model predicting individual baseline risk of study outcomes and examines treatment effects across risk strata, from effect modeling, which directly estimates individual treatment effects from models that include treatment, multiple patient characteristics and interactions of treatment with selected characteristics. Purpose To identify, describe and evaluate findings from reports that cite the Statement and present predictive modeling of HTE in RCTs. Data Extraction We identified reports using PubMed, Google Scholar, Web of Science, SCOPUS through July 5, 2024. Using double review with adjudication, we assessed consistency with Statement recommendations, credibility of HTE findings (applying criteria adapted from the Instrument to assess Credibility of Effect Modification Analyses (ICEMAN)), and clinical importance of credible findings. Results We identified 65 reports (presenting 31 risk models, 41 effect models). Contrary to Statement recommendations, only 25 of 48 studies with positive overall findings included a risk model; most effect models included multiple predictors with little prior evidence for HTE. Claims of HTE were noted in 23 risk modeling and 31 effect modeling reports, but risk modeling met credibility criteria more frequently (87 vs 32 percent). For effect models, external validation of HTE findings was critical in establishing credibility. Credible HTE from either approach was usually judged clinically important (24 of 30). In 19 reports from trials suggesting overall treatment benefits, modeling identified subgroups of 5-67% of patients predicted to experience no benefit or net treatment harm. In five that found no overall benefit, subgroups of 25-60% of patients were nevertheless predicted to benefit. Conclusions Multivariable predictive modeling identified credible, clinically important HTE in one third of 65 reports. Risk modeling found credible HTE more frequently; effect modeling analyses were usually exploratory, but external validation served to increase credibility.
Collapse
Affiliation(s)
- Joe V Selby
- Division of Research, Kaiser Permanente Northern California, Oakland, CA (emeritus)
| | - Carolien C H M Maas
- Tufts Predictive Analytics and Comparative Effectiveness Center, Tufts University School of Medicine, Boston MA
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bruce H Fireman
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - David M Kent
- Tufts Predictive Analytics and Comparative Effectiveness Center, Tufts University School of Medicine, Boston MA
| |
Collapse
|
3
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, Shu HQ, Peng K, Wu Y, Zhang DY, Qiu Y, Zhou X, Yao YM, Shang Y. Viral sepsis: diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res 2024; 11:78. [PMID: 39676169 PMCID: PMC11648306 DOI: 10.1186/s40779-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Sepsis, characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection, remains a significant challenge in clinical practice. Despite advancements in understanding host-bacterial interactions, molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standard evaluations typically exclude viral panels. Moreover, these viruses not only activate conventional pattern recognition receptors (PRRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) but also initiate primary antiviral pathways such as cyclic guanosine monophosphate adenosine monophosphate (GMP-AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling and interferon response mechanisms. Such activations lead to cellular stress, metabolic disturbances, and extensive cell damage that exacerbate tissue injury while leading to a spectrum of clinical manifestations. This complexity poses substantial challenges for the clinical management of affected cases. In this review, we elucidate the definition and diagnosis criteria for viral sepsis while synthesizing current knowledge regarding its etiology, epidemiology, and pathophysiology, molecular mechanisms involved therein as well as their impact on immune-mediated organ damage. Additionally, we discuss clinical considerations related to both existing therapies and advanced treatment interventions, aiming to enhance the comprehensive understanding surrounding viral sepsis.
Collapse
Affiliation(s)
- Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Gang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Lan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Bo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le-Hao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Ding-Yu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
5
|
Sarangi SC, Sharma D. Navigating the Therapeutic Roller Coaster of COVID-19: Lessons for the Future. Indian J Public Health 2024; 68:462-463. [PMID: 39321244 DOI: 10.4103/ijph.ijph_1110_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/03/2023] [Indexed: 09/27/2024] Open
Affiliation(s)
- Sudhir Chandra Sarangi
- Additional Professor, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Deeksha Sharma
- PhD Scholar, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Di Stefano L, Ram M, Scharfstein DO, Li T, Khanal P, Baksh SN, McBee N, Bengtson CD, Gadomski A, Geriak M, Puskarich MA, Salathe MA, Schutte AE, Tignanelli CJ, Victory J, Bierer BE, Hanley DF, Freilich DA. Losartan in hospitalized patients with COVID-19 in North America: An individual participant data meta-analysis. Medicine (Baltimore) 2023; 102:e33904. [PMID: 37335665 PMCID: PMC10256351 DOI: 10.1097/md.0000000000033904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers (ARBs) have been hypothesized to benefit patients with COVID-19 via the inhibition of viral entry and other mechanisms. We conducted an individual participant data (IPD) meta-analysis assessing the effect of starting the ARB losartan in recently hospitalized COVID-19 patients. METHODS We searched ClinicalTrials.gov in January 2021 for U.S./Canada-based trials where an angiotensin-converting enzyme inhibitors/ARB was a treatment arm, targeted outcomes could be extrapolated, and data sharing was allowed. Our primary outcome was a 7-point COVID-19 ordinal score measured 13 to 16 days post-enrollment. We analyzed data by fitting multilevel Bayesian ordinal regression models and standardizing the resulting predictions. RESULTS 325 participants (156 losartan vs 169 control) from 4 studies contributed IPD. Three were randomized trials; one used non-randomized concurrent and historical controls. Baseline covariates were reasonably balanced for the randomized trials. All studies evaluated losartan. We found equivocal evidence of a difference in ordinal scores 13-16 days post-enrollment (model-standardized odds ratio [OR] 1.10, 95% credible interval [CrI] 0.76-1.71; adjusted OR 1.15, 95% CrI 0.15-3.59) and no compelling evidence of treatment effect heterogeneity among prespecified subgroups. Losartan had worse effects for those taking corticosteroids at baseline after adjusting for covariates (ratio of adjusted ORs 0.29, 95% CrI 0.08-0.99). Hypotension serious adverse event rates were numerically higher with losartan. CONCLUSIONS In this IPD meta-analysis of hospitalized COVID-19 patients, we found no convincing evidence for the benefit of losartan versus control treatment, but a higher rate of hypotension adverse events with losartan.
Collapse
Affiliation(s)
- Leon Di Stefano
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, MD
| | - Daniel O. Scharfstein
- Division of Biostatistics, Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Tianjing Li
- University of Colorado Denver, Anschutz Medical Campus, Denver, CO
| | - Preeti Khanal
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Nichol McBee
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, MD
| | - Charles D. Bengtson
- Department of Internal Medicine, University of Kansas Medical Center, KS City, KS
| | - Anne Gadomski
- Bassett Research Institute, Bassett Medical Center, Cooperstown, NY
| | | | - Michael A. Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis, MN
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN
| | - Matthias A. Salathe
- Department of Internal Medicine, University of Kansas Medical Center, KS City, KS
| | - Aletta E. Schutte
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, NSW, Australia
| | | | - Jennifer Victory
- Bassett Research Institute, Bassett Medical Center, Cooperstown, NY
| | - Barbara E. Bierer
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, MD
| | - Daniel A. Freilich
- Bassett Research Institute, Bassett Medical Center, Cooperstown, NY
- Department of Internal Medicine, Division of Infectious Diseases, Bassett Medical Center, Cooperstown, NY
| |
Collapse
|
7
|
Clinical Features Related to Severity and Mortality among COVID-19 Patients in a Pre-Vaccine Period in Luanda, Angola. Trop Med Infect Dis 2022; 7:tropicalmed7110338. [PMID: 36355881 PMCID: PMC9693333 DOI: 10.3390/tropicalmed7110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with clinical features of diverse severity. Few studies investigated the severity and mortality predictors of coronavirus disease 2019 (COVID-19) in Africa. Herein, we investigated the clinical features of severity and mortality among COVID-19 patients in Luanda, Angola. Methods: This multicenter cohort study involved 101 COVID-19 patients, between December 2020 and April 2021, with clinical and laboratory data collected. Analysis was done using independent-sample t-tests and Chi-square tests. The results were deemed significant when p < 0.05. Results: The mean age of patients was 51 years (ranging from 18 to 80 years) and 60.4% were male. Fever (46%), cough (47%), gastrointestinal symptoms (26.7%), and asthenia (26.7%), were the most common symptoms. About 64.4% of the patients presented coexistent disorders, including hypertension (42%), diabetes (17%), and chronic renal diseases (6%). About 23% were non-severe, 77% were severe, and 10% died during hospitalization. Variations in the concentration of neutrophil, urea, creatinine, c-reactive protein, sodium, creatine kinase, and chloride were independently associated with severity and/or mortality (p < 0.05). Conclusion: Several factors contributed to the severity and mortality among COVID-19 patients in Angola. Further studies related to clinical features should be carried out to help clinical decision-making and follow-up of COVID-19 patients in Angola.
Collapse
|