1
|
Earley AM, Nolting KM, Donovan LA, Burke JM. Trait variation and performance across varying levels of drought stress in cultivated sunflower ( Helianthus annuus L.). AOB PLANTS 2024; 16:plae031. [PMID: 39011498 PMCID: PMC11247526 DOI: 10.1093/aobpla/plae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2024] [Indexed: 07/17/2024]
Abstract
Drought is a major agricultural challenge that is expected to worsen with climate change. A better understanding of drought responses has the potential to inform efforts to breed more tolerant plants. We assessed leaf trait variation and covariation in cultivated sunflower (Helianthus annuus L.) in response to water limitation. Plants were grown under four levels of water availability and assessed for environmentally induced plasticity in leaf stomatal and vein traits as well as biomass (performance indicator), mass fractions, leaf area, leaf mass per area, and chlorophyll content. Overall, biomass declined in response to stress; these changes were accompanied by responses in leaf-level traits including decreased leaf area and stomatal size, and increased stomatal and vein density. The magnitude of trait responses increased with stress severity and relative plasticity of smaller-scale leaf anatomical traits was less than that of larger-scale traits related to construction and growth. Across treatments, where phenotypic plasticity was observed, stomatal density was negatively correlated with stomatal size and positively correlated with minor vein density, but the correlations did not hold up within treatments. Four leaf traits previously shown to reflect major axes of variation in a large sunflower diversity panel under well-watered conditions (i.e. stomatal density, stomatal pore length, vein density, and leaf mass per area) predicted a surprisingly large amount of the variation in biomass across treatments, but trait associations with biomass differed within treatments. Additionally, the importance of these traits in predicting variation in biomass is mediated, at least in part, through leaf size. Our results demonstrate the importance of leaf anatomical traits in mediating drought responses in sunflower, and highlight the role that phenotypic plasticity and multi-trait phenotypes can play in predicting productivity under complex abiotic stresses like drought.
Collapse
Affiliation(s)
- Ashley M Earley
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kristen M Nolting
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- The Plant Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Akter N, Islam MSU, Rahman MS, Zohra FT, Rahman SM, Manirujjaman M, Sarkar MAR. Genome-wide identification and characterization of protein phosphatase 2C (PP2C) gene family in sunflower (Helianthus annuus L.) and their expression profiles in response to multiple abiotic stresses. PLoS One 2024; 19:e0298543. [PMID: 38507444 PMCID: PMC10954154 DOI: 10.1371/journal.pone.0298543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024] Open
Abstract
Plant protein phosphatase 2C (PP2C) plays vital roles in responding to various stresses, stimulating growth factors, phytohormones, and metabolic activities in many important plant species. However, the PP2C gene family has not been investigated in the economically valuable plant species sunflower (Helianthus annuus L.). This study used comprehensive bioinformatics tools to identify and characterize the PP2C gene family members in the sunflower genome (H. annuus r1.2). Additionally, we analyzed the expression profiles of these genes using RNA-seq data under four different stress conditions in both leaf and root tissues. A total of 121 PP2C genes were identified in the sunflower genome distributed unevenly across the 17 chromosomes, all containing the Type-2C phosphatase domain. HanPP2C genes are divided into 15 subgroups (A-L) based on phylogenetic tree analysis. Analyses of conserved domains, gene structures, and motifs revealed higher structural and functional similarities within various subgroups. Gene duplication and collinearity analysis showed that among the 53 HanPP2C gene pairs, 48 demonstrated segmental duplications under strong purifying selection pressure, with only five gene pairs showing tandem duplications. The abundant segmental duplication was observed compared to tandem duplication, which was the major factor underlying the dispersion of the PP2C gene family in sunflowers. Most HanPP2C proteins were localized in the nucleus, cytoplasm, and chloroplast. Among the 121 HanPP2C genes, we identified 71 miRNAs targeting 86 HanPP2C genes involved in plant developmental processes and response to abiotic stresses. By analyzing cis-elements, we identified 63 cis-regulatory elements in the promoter regions of HanPP2C genes associated with light responsiveness, tissue-specificity, phytohormone, and stress responses. Based on RNA-seq data from two sunflower tissues (leaf and root), 47 HanPP2C genes exhibited varying expression levels in leaf tissue, while 49 HanPP2C genes showed differential expression patterns in root tissue across all stress conditions. Transcriptome profiling revealed that nine HanPP2C genes (HanPP2C12, HanPP2C36, HanPP2C38, HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73) exhibited higher expression in leaf tissue, and five HanPP2C genes (HanPP2C13, HanPP2C47, HanPP2C48, HanPP2C54, and HanPP2C95) showed enhanced expression in root tissue in response to the four stress treatments, compared to the control conditions. These results suggest that these HanPP2C genes may be potential candidates for conferring tolerance to multiple stresses and further detailed characterization to elucidate their functions. From these candidates, 3D structures were predicted for six HanPP2C proteins (HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73), which provided satisfactory models. Our findings provide valuable insights into the PP2C gene family in the sunflower genome, which could play a crucial role in responding to various stresses. This information can be exploited in sunflower breeding programs to develop improved cultivars with increased abiotic stress tolerance.
Collapse
Affiliation(s)
- Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M. Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States of America
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
3
|
Moroldo M, Blanchet N, Duruflé H, Bernillon S, Berton T, Fernandez O, Gibon Y, Moing A, Langlade NB. Genetic control of abiotic stress-related specialized metabolites in sunflower. BMC Genomics 2024; 25:199. [PMID: 38378469 PMCID: PMC10877922 DOI: 10.1186/s12864-024-10104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Abiotic stresses in plants include all the environmental conditions that significantly reduce yields, like drought and heat. One of the most significant effects they exert at the cellular level is the accumulation of reactive oxygen species, which cause extensive damage. Plants possess two mechanisms to counter these molecules, i.e. detoxifying enzymes and non-enzymatic antioxidants, which include many classes of specialized metabolites. Sunflower, the fourth global oilseed, is considered moderately drought resistant. Abiotic stress tolerance in this crop has been studied using many approaches, but the control of specialized metabolites in this context remains poorly understood. Here, we performed the first genome-wide association study using abiotic stress-related specialized metabolites as molecular phenotypes in sunflower. After analyzing leaf specialized metabolites of 450 hybrids using liquid chromatography-mass spectrometry, we selected a subset of these compounds based on their association with previously known abiotic stress-related quantitative trait loci. Eventually, we characterized these molecules and their associated genes. RESULTS We putatively annotated 30 compounds which co-localized with abiotic stress-related quantitative trait loci and which were associated to seven most likely candidate genes. A large proportion of these compounds were potential antioxidants, which was in agreement with the role of specialized metabolites in abiotic stresses. The seven associated most likely candidate genes, instead, mainly belonged to cytochromes P450 and glycosyltransferases, two large superfamilies which catalyze greatly diverse reactions and create a wide variety of chemical modifications. This was consistent with the high plasticity of specialized metabolism in plants. CONCLUSIONS This is the first characterization of the genetic control of abiotic stress-related specialized metabolites in sunflower. By providing hints concerning the importance of antioxidant molecules in this biological context, and by highlighting some of the potential molecular mechanisms underlying their biosynthesis, it could pave the way for novel applications in breeding. Although further analyses will be required to better understand this topic, studying how antioxidants contribute to the tolerance to abiotic stresses in sunflower appears as a promising area of research.
Collapse
Affiliation(s)
- Marco Moroldo
- UMR LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet Tolosan, France.
| | - Nicolas Blanchet
- UMR LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet Tolosan, France
| | - Harold Duruflé
- UMR LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet Tolosan, France
- UMR BioForA, INRAE, ONF, Orléans, 45075, France
| | - Stéphane Bernillon
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
- UMR MYCSA, INRAE, 33140, Villenave d'Ornon, France
| | - Thierry Berton
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Olivier Fernandez
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
- USC RIBP, INRAE, Université de Reims, 51100, Reims, France
| | - Yves Gibon
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Annick Moing
- UMR BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Nicolas B Langlade
- UMR LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet Tolosan, France
| |
Collapse
|
4
|
Shen J, Wang X, Song H, Wang M, Niu T, Lei H, Qin C, Liu A. Physiology and transcriptomics highlight the underlying mechanism of sunflower responses to drought stress and rehydration. iScience 2023; 26:108112. [PMID: 37860690 PMCID: PMC10583116 DOI: 10.1016/j.isci.2023.108112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Drought can adversely influence the crop growth and production. Accordingly, sunflowers have strong adaptability to drought; hence, we conducted analyses for sunflower seedlings with drought stress and rehydration drought acclimation through physiological measurements and transcriptomics. It showed that drought can cause the accumulation of ROS and enhance the activity of antioxidant enzymes and the content of osmolytes. After rehydration, the contents of ROS and MDA were significantly reduced concomitant with increased antioxidant activity and osmotic adjustment. Totally, 2,589 DEGs were identified among treatments. Functional enrichment analysis showed that DEGs were mainly involved in plant hormone signal transduction, MAPK signaling, and biosynthesis of secondary metabolites. Comparison between differentially spliced genes and DEGs indicated that bHLH025, NAC53, and SINAT3 may be pivotal genes involved in sunflower drought resistance. Our results not only highlight the underlying mechanism of drought stress and rehydration in sunflower but also provide a theoretical basis for crop genetic breeding.
Collapse
Affiliation(s)
- Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Mingyang Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Tianzeng Niu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Haiying Lei
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Cheng Qin
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| |
Collapse
|
5
|
Ali S, Tyagi A, Bae H. ROS interplay between plant growth and stress biology: Challenges and future perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108032. [PMID: 37757722 DOI: 10.1016/j.plaphy.2023.108032] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In plants, reactive oxygen species (ROS) have emerged as a multifunctional signaling molecules that modulate diverse stress and growth responses. Earlier studies on ROS in plants primarily focused on its toxicity and ROS-scavenging processes, but recent findings are offering new insights on its role in signal perception and transduction. Further, the interaction of cell wall receptors, calcium channels, HATPase, protein kinases, and hormones with NADPH oxidases (respiratory burst oxidase homologues (RBOHs), provides concrete evidence that ROS regulates major signaling cascades in different cellular compartments related to stress and growth responses. However, at the molecular level there are many knowledge gaps regarding how these players influence ROS signaling and how ROS regulate them during growth and stress events. Furthermore, little is known about how plant sensors or receptors detect ROS under various environmental stresses and induce subsequent signaling cascades. In light of this, we provided an update on the role of ROS signaling in plant growth and stress biology. First, we focused on ROS signaling, its production and regulation by cell wall receptor like kinases. Next, we discussed the interplay between ROS, calcium and hormones, which forms a major signaling trio regulatory network of signal perception and transduction. We also provided an overview on ROS and nitric oxide (NO) crosstalk. Furthermore, we emphasized the function of ROS signaling in biotic, abiotic and mechanical stresses, as well as in plant growth and development. Finally, we conclude by highlighting challenges and future perspectives of ROS signaling in plants that warrants future investigation.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
6
|
Shi H, Wu Y, Yi L, Hu H, Su F, Wang Y, Li D, Hou J. Analysis of QTL mapping for germination and seedling response to drought stress in sunflower ( Helianthus annuus L.). PeerJ 2023; 11:e15275. [PMID: 37159834 PMCID: PMC10163870 DOI: 10.7717/peerj.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023] Open
Abstract
Sunflower is an important oilseed crop across the world. It is considered as a moderately drought tolerant plant, however, its yield is still negatively affected by drought stress. Improving drought tolerance is of the outmost important for breeding. Although several studies have documented the relationship between the sunflower phenotype and genotype under drought stress, but relatively few studies have simultaneously investigated the molecular mechanisms of drought tolerance in the sunflower at different growth stages. In this study, we conducted quantitative trait locus (QTL) analysis for different sunflower traits during the germination and seedling stages. Eighteen phenotypic traits were evaluated under well-watered and drought stress conditions. We determined that the germination rate, germination potential, germination index, and root-to-shoot ratio can be used as effective indexes for drought tolerance selection and breeding. A total of 33 QTLs were identified on eight chromosomes (PVE: 0.016%-10.712% with LOD: 2.017-7.439). Within the confidence interval of the QTL, we identified 60 putative drought-related genes. Four genes located on chromosome 13 may function in both germination and seedling stages for drought response. Genes LOC110898128, LOC110898092, LOC110898071, and LOC110898072 were annotated as aquaporin SIP1-2-like, cytochrome P450 94C1, GABA transporter 1-like, and GABA transporter 1-like isoform X2, respectively. These genes will be used for further functional validation. This study provides insight into the molecular mechanisms of the sunflower's in response to drought stress. At the same time, it lays a foundation for sunflower drought tolerance breeding and genetic improvement.
Collapse
Affiliation(s)
- Huimin Shi
- Inner Mongolia Agricultural University, College of Agriculture, Huhhot, China
| | - Yang Wu
- Inner Mongolia Agricultural University, College of Agriculture, Huhhot, China
| | - Liuxi Yi
- Inner Mongolia Agricultural University, College of Agriculture, Huhhot, China
| | - Haibo Hu
- Inner Mongolia Agricultural University, College of Agriculture, Huhhot, China
| | - Feiyan Su
- Inner Mongolia Agricultural University, College of Agriculture, Huhhot, China
| | - Yanxia Wang
- Inner Mongolia Agricultural University, College of Agriculture, Huhhot, China
| | - Dandan Li
- Inner Mongolia Agricultural University, College of Agriculture, Huhhot, China
| | - Jianhua Hou
- Inner Mongolia Agricultural University, College of Agriculture, Huhhot, China
| |
Collapse
|