1
|
Delrue C, Speeckaert MM. Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine. J Pers Med 2024; 14:1157. [PMID: 39728069 DOI: 10.3390/jpm14121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a major worldwide health concern because of its progressive nature and complex biology. Traditional diagnostic and therapeutic approaches usually fail to account for disease heterogeneity, resulting in low efficacy. Precision medicine offers a novel approach to studying kidney disease by combining omics technologies such as genomics, transcriptomics, proteomics, metabolomics, and epigenomics. By identifying discrete disease subtypes, molecular biomarkers, and therapeutic targets, these technologies pave the way for personalized treatment approaches. Multi-omics integration has enhanced our understanding of CKD by revealing intricate molecular linkages and pathways that contribute to treatment resistance and disease progression. While pharmacogenomics offers insights into expected responses to personalized treatments, single-cell and spatial transcriptomics can be utilized to investigate biological heterogeneity. Despite significant development, challenges persist, including data integration concerns, high costs, and ethical quandaries. Standardized data protocols, collaborative data-sharing frameworks, and advanced computational tools such as machine learning and causal inference models are required to address these challenges. With the advancement of omics technology, nephrology may benefit from improved diagnostic accuracy, risk assessment, and personalized care. By overcoming these barriers, precision medicine has the potential to develop novel techniques for improving patient outcomes in kidney disease treatment.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Jones AC, Patki A, Srinivasasainagendra V, Tiwari HK, Armstrong ND, Chaudhary NS, Limdi NA, Hidalgo BA, Davis B, Cimino JJ, Khan A, Kiryluk K, Lange LA, Lange EM, Arnett DK, Young BA, Diamantidis CJ, Franceschini N, Wassertheil-Smoller S, Rich SS, Rotter JI, Mychaleckyj JC, Kramer HJ, Chen YDI, Psaty BM, Brody JA, de Boer IH, Bansal N, Bis JC, Irvin MR. Single-Ancestry versus Multi-Ancestry Polygenic Risk Scores for CKD in Black American Populations. J Am Soc Nephrol 2024; 35:1558-1569. [PMID: 39073889 PMCID: PMC11543021 DOI: 10.1681/asn.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Key Points The predictive performance of an African ancestry–specific polygenic risk score (PRS) was comparable to a European ancestry–derived PRS for kidney traits. However, multi-ancestry PRSs outperform single-ancestry PRSs in Black American populations. Predictive accuracy of PRSs for CKD was improved with the use of race-free eGFR. Background CKD is a risk factor of cardiovascular disease and early death. Recently, polygenic risk scores (PRSs) have been developed to quantify risk for CKD. However, African ancestry populations are underrepresented in both CKD genetic studies and PRS development overall. Moreover, European ancestry–derived PRSs demonstrate diminished predictive performance in African ancestry populations. Methods This study aimed to develop a PRS for CKD in Black American populations. We obtained score weights from a meta-analysis of genome-wide association studies for eGFR in the Million Veteran Program and Reasons for Geographic and Racial Differences in Stroke Study to develop an eGFR PRS. We optimized the PRS risk model in a cohort of participants from the Hypertension Genetic Epidemiology Network. Validation was performed in subsets of Black participants of the Trans-Omics in Precision Medicine Consortium and Genetics of Hypertension Associated Treatment Study. Results The prevalence of CKD—defined as stage 3 or higher—was associated with the PRS as a continuous predictor (odds ratio [95% confidence interval]: 1.35 [1.08 to 1.68]) and in a threshold-dependent manner. Furthermore, including APOL1 risk status—a putative variant for CKD with higher prevalence among those of sub-Saharan African descent—improved the score's accuracy. PRS associations were robust to sensitivity analyses accounting for traditional CKD risk factors, as well as CKD classification based on prior eGFR equations. Compared with previously published PRS, the predictive performance of our PRS was comparable with a European ancestry–derived PRS for kidney traits. However, single-ancestry PRSs were less predictive than multi-ancestry–derived PRSs. Conclusions In this study, we developed a PRS that was significantly associated with CKD with improved predictive accuracy when including APOL1 risk status. However, PRS generated from multi-ancestry populations outperformed single-ancestry PRS in our study.
Collapse
Affiliation(s)
- Alana C. Jones
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amit Patki
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vinodh Srinivasasainagendra
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hemant K. Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nicole D. Armstrong
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ninad S. Chaudhary
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nita A. Limdi
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bertha A. Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brittney Davis
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James J. Cimino
- Department of Biomedical Informatics and Data Science, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Leslie A. Lange
- Department of Biomedical Informatics, University of Colorado-Anschutz, Aurora, Colorado
| | - Ethan M. Lange
- Department of Biomedical Informatics, University of Colorado-Anschutz, Aurora, Colorado
| | - Donna K. Arnett
- Office of the Provost, University of South Carolina, Columbia, South Carolina
| | - Bessie A. Young
- Division of Nephrology, University of Washington, Seattle, Washington
| | | | - Nora Franceschini
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, New York
| | - Stephen S. Rich
- Department of Genome Sciences, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- Department of Pediatrics, The Institute for Translational Genomic and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbort-UCLA Medical Center, Torrance, California
| | - Josyf C. Mychaleckyj
- Department of Genome Sciences, University of Virginia, Charlottesville, Virginia
| | - Holly J. Kramer
- Departments of Public Health Sciences and Medicine, Loyola University Medical Center, Taywood, Illinois
| | - Yii-Der I. Chen
- Department of Pediatrics, The Institute for Translational Genomic and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbort-UCLA Medical Center, Torrance, California
| | - Bruce M. Psaty
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Ian H. de Boer
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Nisha Bansal
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Marguerite R. Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Diana NE, Naicker S. The changing landscape of HIV-associated kidney disease. Nat Rev Nephrol 2024; 20:330-346. [PMID: 38273026 DOI: 10.1038/s41581-023-00801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Abstract
The HIV epidemic has devastated millions of people globally, with approximately 40 million deaths since its start. The availability of antiretroviral therapy (ART) has transformed the prognosis of millions of individuals infected with HIV such that a diagnosis of HIV infection no longer automatically confers death. However, morbidity and mortality remain substantial among people living with HIV. HIV can directly infect the kidney to cause HIV-associated nephropathy (HIVAN) - a disease characterized by podocyte and tubular damage and associated with an increased risk of kidney failure. The reports of HIVAN occurring primarily in those of African ancestry led to the discovery of its association with APOL1 risk alleles. The advent of ART has led to a substantial decrease in the prevalence of HIVAN; however, reports have emerged of an increase in the prevalence of other kidney pathology, such as focal segmental glomerulosclerosis and pathological conditions associated with co-morbidities of ageing, such as hypertension and diabetes mellitus. Early initiation of ART also results in a longer cumulative exposure to medications, increasing the likelihood of nephrotoxicity. A substantial body of literature supports the use of kidney transplantation in people living with HIV, demonstrating significant survival benefits compared with that of people undergoing chronic dialysis, and similar long-term allograft and patient survival compared with that of HIV-negative kidney transplant recipients.
Collapse
Affiliation(s)
- Nina E Diana
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Saraladevi Naicker
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|