Hagen M, Chebly J, Dhaen B, Fassian N, Salvalaggio M, Catelli DS, Verschueren S, Vanrenterghem J. Peak patellar tendon force progressions during heavy load single-leg squats on level ground and decline board.
Clin Biomech (Bristol, Avon) 2024;
112:106179. [PMID:
38219457 DOI:
10.1016/j.clinbiomech.2024.106179]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND
Progressive tendon loading programs for patellar tendinopathy typically include single-leg squats with heavy weights either on level ground or on a decline board. Changes in patellar tendon force due to variations of the heavy load single-leg squat have not yet been objectively quantified. The objective of this study was to investigate the influence of the mass of an external weight and the use of a decline board on the peak patellar tendon force during a heavy load single-leg squat.
METHODS
Twelve healthy participants performed single-leg back squats on a decline board and level ground at 70%, 80% and 90% of their one repetition maximum. Three-dimensional kinematics and ground reaction forces were measured and the peak patellar tendon force was calculated using musculoskeletal modelling. A two-way repeated measures ANOVA determined the main effects for the mass of the external weights and the use of a decline board as well as their interaction effect.
FINDINGS
Peak patellar tendon forces were significantly higher on the decline board compared to level ground (p < 0.05). Neither on the decline board, nor on level ground did the peak patellar tendon force increase significantly when increasing the external weights (p > 0.05).
INTERPRETATION
Progression in peak patellar tendon forces during a heavy load single-leg squat can only be obtained with a decline board. Increasing the mass of the external weight from 70% to 90% of the one repetition maximum does not result in a progressively higher peak patellar tendon force.
Collapse