1
|
García-Elfring A, Roffey HL, Abergas JM, Hendry AP, Barrett RDH. GTP cyclohydrolase II (gch2) and axanthism in ball pythons: A new vertebrate model for pterin-based pigmentation. Anim Genet 2025; 56:e70011. [PMID: 40235167 DOI: 10.1111/age.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Pterin pigments are responsible for many of the bright colors observed across the animal kingdom. However, unlike melanin, the genetics of pterin-based pigmentation has received relatively little attention in animal coloration studies. Here, we investigate a lineage of axanthic ball pythons (Python regius) found in captivity as a model system to study pterin pigmentation in vertebrates. By crowdsourcing shed skin samples from commercial breeders and applying a case-control study design, we used whole-genome pool sequencing (pool-seq) and variant annotation. We identified a premature stop codon in the gene GTP cyclohydrolase II (gch2), which is associated with the axanthic phenotype. GCH2 catalyzes the first rate-limiting step in riboflavin biosynthesis. This study provides the first identification of an axanthism-associated gene in vertebrates and highlights the utility of ball pythons as a model to study pterin-based pigmentation.
Collapse
Affiliation(s)
| | | | - Jaren M Abergas
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
2
|
Garcia-Elfring A, Roffey HL, Abergas JM, Wuyts J, Hendry AP, Tzika AC, Barrett RDH. A Ball Python Colour Morph Implicates MC1R in Melanophore-Xanthophore Distribution and Pattern Formation. Pigment Cell Melanoma Res 2025; 38:e13215. [PMID: 39609249 DOI: 10.1111/pcmr.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Reptiles showcase an extensive array of skin colours and patterns, yet little is known about the genetics of reptile colouration. Here, we investigate the genetic basis of the Clown colour morph found in captive-bred ball pythons (Python regius) to study skin pigmentation and patterning in snakes. We obtained samples by crowdsourcing shed skin from commercial breeders and hobbyists. We applied a case-control design, whole-genome pool sequencing, variant annotation, histological analyses, and electron microscopy imaging. We identified a missense mutation in a transmembrane region of the melanocortin-1 receptor (MC1R) associated with the Clown phenotype. In classic avian and mammalian model species, MC1R is known for controlling the type and amount of melanin produced. In contrast, our results suggest that MC1R signalling might play a key role in pattern formation in ball pythons, affecting xanthophore-melanophore distribution. This work highlights the varied functions of MC1R across different vertebrate lineages and promotes a novel model system to study reptile colouration.
Collapse
Affiliation(s)
| | | | - Jaren M Abergas
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jurgen Wuyts
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
3
|
Kokiattrakool W, Saengcharatuaong N, Luapan J, Sroykham W, Kumsiri R, Kanchanaphum P. Differentiation between wild type and heterozygous albino ball pythons (Python regius) by PCR and qPCR. BRAZ J BIOL 2024; 84:e286676. [PMID: 39383416 DOI: 10.1590/1519-6984.286676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 10/11/2024] Open
Abstract
Python regius or ball pythons are the famous exotic pets because of their beautiful color and pattern. The albino ball python is one type of ball python, but it is very difficult to determine the difference of phenotype between wildtype and heterozygous genotype of albino (het albino). In this study, PCR and qPCR can distinguish between wildtype and het albino. The PCR product size of wildtype and het albino was 415 bp, but the intensity of PCR product of wildtype was more intense than that of het albinos. No PCR amplicon was found in albinos and the Ct value of wildtype was lower than Ct of het albinos. The molecular detection technique, especially PCR and qPCR, can determine the difference between wildtype and het albinos of ball pythons.
Collapse
Affiliation(s)
- W Kokiattrakool
- Rangsit University, Faculty of Science, Biomedical Science Program, Pathumthani, Thailand
| | - N Saengcharatuaong
- Rangsit University, Faculty of Science, Biomedical Science Program, Pathumthani, Thailand
| | - J Luapan
- Animal Space Exotic Pet Hospital, Bangkok, Thailand
| | - W Sroykham
- Navamindradhiraj University, Faculty of Science and Health Technology, Bangkok, Thailand
| | - R Kumsiri
- Rangsit University, Faculty of Science, Pathobiology Unit, Pathumthani, Thailand
| | - P Kanchanaphum
- Rangsit University, Faculty of Science, Biochemistry Unit, Pathumthani, Thailand
| |
Collapse
|
4
|
Latney LV. Updates for Reptile Pediatric Medicine. Vet Clin North Am Exot Anim Pract 2024; 27:379-409. [PMID: 38097491 DOI: 10.1016/j.cvex.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
The health of hatchling, juvenile, and young adult reptiles continues to be plagued by historic nutritional deficiencies, old and emerging infectious diseases, and more recent phenotype-selective congenital abnormalities that impact welfare. Knowledge of mating seasonality, average egg counts, gestation times, and age and/or size for sexual maturity is necessary to help guide best practices for care of pediatric reptiles. Calcium, vitamin D3, and ultraviolet B (UVB) lighting recommendations vary in effectiveness amongst different species and can change with age. Phenotype-selective color patterns for spider ball pythons and scalation pattern for bearded dragons have resulted in vestibular disease, and increased evaporative water loss, respectively. Salmonellosis remains the most reported zoonotic disease for captive reptiles in the United States, despite improvements in client education and improvements in captive reptile husbandry.
Collapse
Affiliation(s)
- La'Toya V Latney
- Avian and Exotic Medicine & Surgery, The Animal Medical Center, 510 East 62nd Street, New York, NY 10065, USA.
| |
Collapse
|
5
|
Kambe T, Wagatsuma T. Metalation and activation of Zn 2+ enzymes via early secretory pathway-resident ZNT proteins. BIOPHYSICS REVIEWS 2023; 4:041302. [PMID: 38510844 PMCID: PMC10903440 DOI: 10.1063/5.0176048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/21/2023] [Indexed: 03/22/2024]
Abstract
Zinc (Zn2+), an essential trace element, binds to various proteins, including enzymes, transcription factors, channels, and signaling molecules and their receptors, to regulate their activities in a wide range of physiological functions. Zn2+ proteome analyses have indicated that approximately 10% of the proteins encoded by the human genome have potential Zn2+ binding sites. Zn2+ binding to the functional site of a protein (for enzymes, the active site) is termed Zn2+ metalation. In eukaryotic cells, approximately one-third of proteins are targeted to the endoplasmic reticulum; therefore, a considerable number of proteins mature by Zn2+ metalation in the early secretory pathway compartments. Failure to capture Zn2+ in these compartments results in not only the inactivation of enzymes (apo-Zn2+ enzymes), but also their elimination via degradation. This process deserves attention because many Zn2+ enzymes that mature during the secretory process are associated with disease pathogenesis. However, how Zn2+ is mobilized via Zn2+ transporters, particularly ZNTs, and incorporated in enzymes has not been fully elucidated from the cellular perspective and much less from the biophysical perspective. This review focuses on Zn2+ enzymes that are activated by Zn2+ metalation via Zn2+ transporters during the secretory process. Further, we describe the importance of Zn2+ metalation from the physiopathological perspective, helping to reveal the importance of understanding Zn2+ enzymes from a biophysical perspective.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Guo L, Kruglyak L. Genetics and biology of coloration in reptiles: the curious case of the Lemon Frost geckos. Physiol Genomics 2023; 55:479-486. [PMID: 37642275 DOI: 10.1152/physiolgenomics.00015.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Although there are more than 10,000 reptile species, and reptiles have historically contributed to our understanding of biology, genetics research into class Reptilia has lagged compared with other animals. Here, we summarize recent progress in genetics of coloration in reptiles, with a focus on the leopard gecko, Eublepharis macularius. We highlight genetic approaches that have been used to examine variation in color and pattern formation in this species as well as to provide insights into mechanisms underlying skin cancer. We propose that their long breeding history in captivity makes leopard geckos one of the most promising emerging reptilian models for genetic studies. More broadly, technological advances in genetics, genomics, and gene editing may herald a golden era for studies of reptile biology.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, California, United States
- Department of Biological Chemistry, University of California, Los Angeles, California, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| |
Collapse
|
7
|
Lederer I, Shahid B, Dao U, Brogdon A, Byrtus H, Delva M, Deva O, Hatfield P, Hertz M, Justice J, Mavor S, Pilbeam E, Rice Z, Simpson A, Temar H, Wynn R, Xhangolli J, Graves C, Seidel H. A frameshift variant in the melanophilin gene is associated with loss of pigment from shed skin in ball pythons ( Python regius ). MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000896. [PMID: 37637270 PMCID: PMC10448248 DOI: 10.17912/micropub.biology.000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
Melanophilin is a myosin adaptor required for transporting the pigment melanin within cells. Loss of melanophilin in fish, birds, and mammals causes pigmentation defects, but little is known about the role of melanophilin in non-avian reptiles. Here we show that a frameshift in the melanophilin gene in ball python ( P. regius ) is associated with loss of pigment from shed skin. This variant is predicted to remove the myosin-binding domain of melanophilin and thereby impair transport of melanin-containing organelles. Our study represents the first description of a melanophilin variant in a non-avian reptile and confirms the role of melanophilin across vertebrates.
Collapse
|
8
|
Dao UM, Lederer I, Tabor RL, Shahid B, Graves CW, Seidel HS. Stripes and loss of color in ball pythons (Python regius) are associated with variants affecting endothelin signaling. G3 (BETHESDA, MD.) 2023; 13:jkad063. [PMID: 37191439 PMCID: PMC10320763 DOI: 10.1093/g3journal/jkad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Color patterns in nonavian reptiles are beautifully diverse, but little is known about the genetics and development of these patterns. Here, we investigated color patterning in pet ball pythons (Python regius), which have been bred to show color phenotypes that differ dramatically from the wildtype form. We report that several color phenotypes in pet animals are associated with putative loss-of-function variants in the gene encoding endothelin receptor EDNRB1: (1) frameshift variants in EDNRB1 are associated with conversion of the normal mottled color pattern to skin that is almost fully white, (2) missense variants affecting conserved sites of the EDNRB1 protein are associated with dorsal, longitudinal stripes, and (3) substitutions at EDNRB1 splice donors are associated with subtle changes in patterning compared to wildtype. We propose that these phenotypes are caused by loss of specialized color cells (chromatophores), with loss ranging from severe (fully white) to moderate (dorsal striping) to mild (subtle changes in patterning). Our study is the first to describe variants affecting endothelin signaling in a nonavian reptile and suggests that reductions in endothelin signaling in ball pythons can produce a variety of color phenotypes, depending on the degree of color cell loss.
Collapse
Affiliation(s)
- Uyen M Dao
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Izabella Lederer
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Ray L Tabor
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Basmah Shahid
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Chiron W Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
9
|
Garcia-Elfring A, Sabin CE, Iouchmanov AL, Roffey HL, Samudra SP, Alcala AJ, Osman RS, Lauderdale JD, Hendry AP, Menke DB, Barrett RDH. Piebaldism and chromatophore development in reptiles are linked to the tfec gene. Curr Biol 2023; 33:755-763.e3. [PMID: 36702128 DOI: 10.1016/j.cub.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/12/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish.1,2,3,4 Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration.
Collapse
Affiliation(s)
- Alan Garcia-Elfring
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Christina E Sabin
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Neuroscience Division of the Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, USA
| | - Anna L Iouchmanov
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Heather L Roffey
- Biology Department, Vanier College, Montreal, QC H4L 3X9, Canada
| | - Sukhada P Samudra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Aaron J Alcala
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rida S Osman
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Neuroscience Division of the Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rowan D H Barrett
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|