1
|
Yoshigai E, Hara T, Hashimoto M, Tsuzuki H, Abe T, Inoue K, Noguchi A, Ohashi T, Fukada T. ZIP13 marks muscle satellite cells and contributes to their quiescent and active phase balance. Sci Rep 2025; 15:9206. [PMID: 40097560 PMCID: PMC11914201 DOI: 10.1038/s41598-025-92501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Loss of ZIP13 causes Ehlers-Danlos syndrome spondylodysplastic type 3 involving connective tissue dysplasias associated with a reduction in muscular strength. However, ZIP13 role in skeletal muscle homeostasis, particularly for the regulation of muscle satellite cells (MuSCs), remains poorly understood. In this study, we investigated Zip13-knockout (KO) mice and found a reduction in MuSCs of Zip13-KO mice, in which the quiescent and activated phase balances were disrupted. To clarify the physiological role and dynamics of ZIP13 expression in MuSCs, we generated Zip13-GFP knock-in (KI) mice encoding GFP at the Zip13 locus, which showed that ZIP13 contributes to the phase balance regulation of quiescent and activated MuSCs and their functions. Indeed, Zip13-KO mice exhibited delayed recovery from skeletal muscle injury, indicating ZIP13 requirement for proper skeletal muscle regeneration. Moreover, GFP expression was reduced in the MuSCs of homozygous Zip13-GFP KI mice whose intact ZIP13 expression was perturbed, suggesting that positive feedback mechanisms exist to maintain ZIP13 expression. Altogether, our results illustrate that ZIP13 might be positively involved in skeletal muscle regeneration by controlling the quiescent/activated phase balance of MuSCs through autoregulatory ZIP13 expression, and that newly generated Zip13-GFP KI mice would be useful for investigating the roles and dynamics of ZIP13-expressing cells.
Collapse
Affiliation(s)
- Emi Yoshigai
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan.
- JSPS Research Fellowship for Young Scientists, Tokyo, Japan.
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Masaki Hashimoto
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Hidenao Tsuzuki
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Ayaka Noguchi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Takuto Ohashi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan.
| |
Collapse
|
2
|
Kiouri DP, Chasapis CT, Mavromoustakos T, Spiliopoulou CA, Stefanidou ME. Zinc and its binding proteins: essential roles and therapeutic potential. Arch Toxicol 2025; 99:23-41. [PMID: 39508885 DOI: 10.1007/s00204-024-03891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Zinc is an essential micronutrient that participates in a multitude of cellular and biochemical processes. It is indispensable for normal growth and the maintenance of physiological functions. As one of the most significant trace elements in the body, zinc fulfills three primary biological roles: catalytic, structural, and regulatory. It serves as a cofactor in over 300 enzymes, and more than 3000 proteins require zinc, underscoring its crucial role in numerous physiological processes such as cell division and growth, immune function, tissue maintenance, as well as synthesis protein and collagen synthesis. Zinc deficiency has been linked to increased oxidative stress and inflammation, which may contribute to the pathogenesis of a multitude of diseases, like neurological disorders and cancer. In addition, zinc is a key constituent of zinc-binding proteins, which play a pivotal role in maintaining cellular zinc homeostasis. This review aims to update and expand upon the understanding of zinc biology, highlighting the fundamental roles of zinc in biological processes and the health implications of zinc deficiency. This work also explores the diverse functions of zinc in immune regulation, cellular growth, and neurological health, emphasizing the need for further research to fully elucidate the therapeutic potential of zinc supplementation in disease prevention and management.
Collapse
Affiliation(s)
- Despoina P Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
3
|
Shoji M, Ohashi T, Nagase S, Yuri H, Ichihashi K, Takagishi T, Nagata Y, Nomura Y, Fukunaka A, Kenjou S, Miyake H, Hara T, Yoshigai E, Fujitani Y, Sakurai H, Dos Santos HG, Fukada T, Kuzuhara T. Possible involvement of zinc transporter ZIP13 in myogenic differentiation. Sci Rep 2024; 14:8052. [PMID: 38609428 PMCID: PMC11014994 DOI: 10.1038/s41598-024-56912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Ehlers-Danlos syndrome spondylodysplastic type 3 (EDSSPD3, OMIM 612350) is an inherited recessive connective tissue disorder that is caused by loss of function of SLC39A13/ZIP13, a zinc transporter belonging to the Slc39a/ZIP family. We previously reported that patients with EDSSPD3 harboring a homozygous loss of function mutation (c.221G > A, p.G64D) in ZIP13 exon 2 (ZIP13G64D) suffer from impaired development of bone and connective tissues, and muscular hypotonia. However, whether ZIP13 participates in the early differentiation of these cell types remains unclear. In the present study, we investigated the role of ZIP13 in myogenic differentiation using a murine myoblast cell line (C2C12) as well as patient-derived induced pluripotent stem cells (iPSCs). We found that ZIP13 gene expression was upregulated by myogenic stimulation in C2C12 cells, and its knockdown disrupted myotubular differentiation. Myocytes differentiated from iPSCs derived from patients with EDSSPD3 (EDSSPD3-iPSCs) also exhibited incomplete myogenic differentiation. Such phenotypic abnormalities of EDSSPD3-iPSC-derived myocytes were corrected by genomic editing of the pathogenic ZIP13G64D mutation. Collectively, our findings suggest the possible involvement of ZIP13 in myogenic differentiation, and that EDSSPD3-iPSCs established herein may be a promising tool to study the molecular basis underlying the clinical features caused by loss of ZIP13 function.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takuto Ohashi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Saki Nagase
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Haato Yuri
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Kenta Ichihashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Teruhisa Takagishi
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuji Nagata
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yuki Nomura
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Sae Kenjou
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Hatsuna Miyake
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Takafumi Hara
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Emi Yoshigai
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-City, Gunma, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto-City, Kyoto, Japan
| | | | - Toshiyuki Fukada
- Laboratory of Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashirocho, Tokushima-City, Tokushima, 770-8514, Japan.
| |
Collapse
|
4
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Dorward AM, Stewart AJ, Pitt SJ. The role of Zn2+ in shaping intracellular Ca2+ dynamics in the heart. J Gen Physiol 2023; 155:e202213206. [PMID: 37326614 PMCID: PMC10276528 DOI: 10.1085/jgp.202213206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Increasing evidence suggests that Zn2+ acts as a second messenger capable of transducing extracellular stimuli into intracellular signaling events. The importance of Zn2+ as a signaling molecule in cardiovascular functioning is gaining traction. In the heart, Zn2+ plays important roles in excitation-contraction (EC) coupling, excitation-transcription coupling, and cardiac ventricular morphogenesis. Zn2+ homeostasis in cardiac tissue is tightly regulated through the action of a combination of transporters, buffers, and sensors. Zn2+ mishandling is a common feature of various cardiovascular diseases. However, the precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during normal cardiac function and during pathological conditions are not fully understood. In this review, we consider the major pathways by which the concentration of intracellular Zn2+ is regulated in the heart, the role of Zn2+ in EC coupling, and discuss how Zn2+ dyshomeostasis resulting from altered expression levels and efficacy of Zn2+ regulatory proteins are key drivers in the progression of cardiac dysfunction.
Collapse
Affiliation(s)
- Amy M. Dorward
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
7
|
Hara T, Yoshigai E, Ohashi T, Fukada T. Zinc in Cardiovascular Functions and Diseases: Epidemiology and Molecular Mechanisms for Therapeutic Development. Int J Mol Sci 2023; 24:ijms24087152. [PMID: 37108314 PMCID: PMC10139119 DOI: 10.3390/ijms24087152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Zinc is an essential trace element that plays an important physiological role in numerous cellular processes. Zinc deficiency can result in diverse symptoms, such as impairment of the immune response, skin disorders, and impairments in cardiovascular functions. Recent reports have demonstrated that zinc acts as a signaling molecule, and its signaling pathways, referred to as zinc signals, are related to the molecular mechanisms of cardiovascular functions. Therefore, comprehensive understanding of the significance of zinc-mediated signaling pathways is vital as a function of zinc as a nutritional component and of its molecular mechanisms and targets. Several basic and clinical studies have reported the relationship between zinc level and the onset and pathology of cardiovascular diseases, which has attracted much attention in recent years. In this review, we summarize the recent findings regarding the effects of zinc on cardiovascular function. We also discuss the importance of maintaining zinc homeostasis in the cardiovascular system and its therapeutic potential as a novel drug target.
Collapse
Affiliation(s)
- Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Emi Yoshigai
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Takuto Ohashi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| |
Collapse
|