1
|
Kim CO, Chang GD, Han HY, Song JH. Re-description, systematics and complete mitochondrial genome of Philheliuscoreanus (Shiraki, 1930) (Diptera, Syrphidae) in the Republic of Korea. Biodivers Data J 2025; 13:e146720. [PMID: 40235957 PMCID: PMC11997609 DOI: 10.3897/bdj.13.e146720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Background The hoverfly Philheliuscoreanus (Shiraki, 1930) was first described, based on only Korean male specimens and subsequent descriptions of the female from Russia did not include discussions of phenotypic variation. Furthermore, full-length mitochondrial genome sequences for the genus are lacking. New information To address these gaps, we here provide a diagnosis, re-description and mitochondrial genome of Philheliuscoreanus (Shiraki, 1930). We evaluated genitalic characters of both males and females with colour photographs and they showed intraspecific variation. There was significant variation in the yellow spots on the pleuron, particularly in females. After obtaining the complete mitochondrial genome of P.coreanus, we performed a phylogenetic analysis using Maximum Likelihood, based on 13 protein-coding genes, with a focus on relationships within the tribe Syrphini. Our results supported the monophyly of Syrphini, showing a sister-group relationship between Philhelius and Doros Meigen, 1822. Furthermore, the Philhelius + Doros clade was closely related to the Chrysotoxum + Dideopsis clade, with relatively high support. The newly-obtained mitochondrial genome of P.coreanus and high-resolution phylogenetic analysis provide essential resources for further analyses of the genus and relationships within Syrphini.
Collapse
Affiliation(s)
- Chan-Ouk Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Wanju, Republic of KoreaDepartment of Agricultural Biology, National Institute of Agricultural SciencesWanjuRepublic of Korea
| | - Gyu-Dong Chang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Wanju, Republic of KoreaDepartment of Agricultural Biology, National Institute of Agricultural SciencesWanjuRepublic of Korea
| | - Ho-Yeon Han
- Yonsei University, Wonju, Republic of KoreaYonsei UniversityWonjuRepublic of Korea
| | - Jeong-Hun Song
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Wanju, Republic of KoreaDepartment of Agricultural Biology, National Institute of Agricultural SciencesWanjuRepublic of Korea
| |
Collapse
|
2
|
Yuan H, Fu W, He S, Li T, Chen B. Study of Mitogenomes Provides Implications for the Phylogenetics and Evolution of the Infraorder Muscomorpha in Diptera. Ecol Evol 2025; 15:e70832. [PMID: 39830699 PMCID: PMC11739608 DOI: 10.1002/ece3.70832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The Muscomorpha is one of the most species-rich brachyceran groups in Diptera, with many species serving as important disease vectors; however, its high-level phylogenetic relationships have long been controversial and unsolved. This study comparatively analyzed the characteristics of mitogenomes of 131 species that represent 18 superfamilies in Muscomorpha, in which mitogenomes of 16 species have been newly sequenced and annotated, demonstrating that their gene composition, order, AT bias, length variation, and codon usage are consistent with documented dipteran mitogenomes. The phylogenetic topologies demonstrated that the robustness of Muscomorpha and major clades within Muscomorpha are monophyletic: Cyclorrhapha, Schizophora, and Calyptratae. A clade of Empidoidea were recovered as the sister group to Cyclorrhapha. Within Cyclorrhapha, Platypezoidea and Syrphoidea were sequentially placed as basal groups of the Cyclorrhapha. The remaining cyclorrhaph superfamilies gathered as two main clades. Ephydroidea were, in most cases, placed as the sister group to Calyptratae. Within Calyptratae, Hippoboscoidea were sister to an assemblage of lineages composed of an Oestroid grade and Muscoidea. The Muscomorpha was proposed to originate in the early Jurassic, and the main clade diversified near the Cretaceous-Paleogene extinction event, estimated using the MCMCtree and six fossil calibration points. The ancestral area of origin and geographic range of Muscomorpha was deduced to be the Palaearctic region with 56.9% probability using the RASP software based on a dated tree.
Collapse
Affiliation(s)
- Huan Yuan
- Chongqing Key Laboratory of Vector Control and Utinization; Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Wenbo Fu
- Chongqing Key Laboratory of Vector Control and Utinization; Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Shulin He
- Chongqing Key Laboratory of Vector Control and Utinization; Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Tingjing Li
- Chongqing Key Laboratory of Vector Control and Utinization; Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Bin Chen
- Chongqing Key Laboratory of Vector Control and Utinization; Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| |
Collapse
|
3
|
Feng XL, Xie TC, Wang ZX, Lin C, Li ZC, Huo J, Li Y, Liu C, Gao JM, Qi J. Distinguishing Sanghuangporus from sanghuang-related fungi: a comparative and phylogenetic analysis based on mitogenomes. Appl Microbiol Biotechnol 2024; 108:423. [PMID: 39037499 PMCID: PMC11263249 DOI: 10.1007/s00253-024-13207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/24/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.
Collapse
Affiliation(s)
- Xi-Long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Tian-Chen Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhen-Xin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhao-Chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jinxi Huo
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| |
Collapse
|
4
|
Zhao R, Li H, Wu G, Wang YF. Codon usage bias analysis in the mitochondrial genomes of five Rhingia Scopoli (Diptera, Syrphidae, Eristalinae) species. Gene 2024; 917:148466. [PMID: 38615984 DOI: 10.1016/j.gene.2024.148466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
This study presents the sequencing and annotation of mitochondrial genomes from five Rhingia species of the family Syrphidae, focusing on codon bias. Each species possessed 22 tRNAs genes, 13 protein-coding genes, 2 rRNAs genes, and a control region, without any observed gene rearrangements. Nucleotide composition analysis revealed a higher AT content compared with GC content, indicating AT enrichment. Neutrality plot, Parity rule 2 bias, and effective number of codons plot analyses collectively indicated that natural selection primarily influences the codon usage bias in the five Rhingia species. Relative synonymous codon usage analysis identified the optimal codons for Rhingia binotata, R. fromosana, R. campestris, R. louguanensis, and R. xanthopoda as 10, 14, 10, 11, and 12, respectively, all ending with A/U and exhibiting AT preference. Phylogenetic analysis, based on maximum likelihood and Bayesian inference methods applied to three datasets, confirmed the monophyly of Rhingia. In conclusion, this research establishes a foundation for understanding the phylogenetic evolution and codon usage patterns in Rhingia, offering valuable for future studies.
Collapse
Affiliation(s)
- Rui Zhao
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Hu Li
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China.
| | - Gang Wu
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Yi-Fan Wang
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| |
Collapse
|
5
|
Liu J, Chen J, Cai X, Yang D, Li X, Liu X. Comparative Analysis of the Mitochondrial Genomes of Chloropidae and Their Implications for the Phylogeny of the Family. Int J Mol Sci 2024; 25:2920. [PMID: 38474171 PMCID: PMC10932363 DOI: 10.3390/ijms25052920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Chloropidae, commonly known as grass flies, represent the most taxonomically diverse family of Diptera Carnoidea, comprising over 3000 described species worldwide. Previous phylogenetic studies of this family have predominantly relied on morphological characters, with mitochondrial genomes being reported in a few species. This study presents 11 newly sequenced mitochondrial genomes (10 Chloropidae and 1 Milichiidae) and provides the first comprehensive comparative analysis of mitochondrial genomes for Chloropidae. Apart from 37 standard genes and the control region, three conserved intergenic sequences across Diptera Cyclorrhapha were identified in all available chloropid mitochondrial genomes. Evolutionary rates within Chloropidae exhibit significant variation across subfamilies, with Chloropinae displaying higher rates than the other three subfamilies. Phylogenetic relationships based on mitochondrial genomes were inferred using maximum likelihood and Bayesian methods. The monophyly of Chloropidae and all four subfamilies is consistently strongly supported, while subfamily relationships within Chloropidae remain poorly resolved, possibly due to rapid evolution.
Collapse
Affiliation(s)
- Jiuzhou Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (J.C.)
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.C.); (D.Y.)
| | - Jiajia Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (J.C.)
| | - Xiaodong Cai
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.C.); (D.Y.)
| | - Ding Yang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.C.); (D.Y.)
| | - Xuankun Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.C.); (D.Y.)
| | - Xiaoyan Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (J.C.)
| |
Collapse
|
6
|
Yang HJ, Yang ZH, Ren TG, Dong WG. Description and phylogenetic analysis of the complete mitochondrial genome in Eulaelaps silvestris provides new insights into the molecular classification of the family Haemogamasidae. Parasitology 2023; 150:821-830. [PMID: 37395062 PMCID: PMC10478059 DOI: 10.1017/s0031182023000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
In this study, the mitochondrial genome of Eulaelaps silvestris, which parasitizes Apodemus chevrieri, was sequenced and assembled to fill the gap in understanding the molecular evolution of the genus Eulaelaps. The E. silvestris mitochondrial genome is a double-stranded DNA molecule with a length of 14 882 bp, with a distinct AT preference for base composition and a notably higher AT content than GC content. The arrangement between genes is relatively compact, with a total of 10 gene intergenic regions and 12 gene overlap regions. All protein-coding genes had a typical ATN initiation codon, and only 2 protein-coding genes had an incomplete termination codon T. Out of the 13 protein-coding genes, the 5 most frequently used codons ended in A/U, with only 1 codon ending in G/C had an relative synonymous codon usage value >1. Except for trnS1 and trnS2, which lacked the D arm, all other tRNAs were able to form a typical cloverleaf structure; and there were a total of 38 mismatches in the folding process of tRNA genes. Unlike the gene arrangement order of the arthropod hypothetical ancestor, the E. silvestris mitochondrial genome underwent fewer rearrangements, mainly near tRNA genes and control regions. Both the maximum likelihood tree and the Bayesian tree showed that the family Haemogamasidae is most closely related to the family Dermanyssidae. The results not only provide a theoretical basis for studying the phylogenetic relationships of the genus Eulaelaps, but also provide molecular evidence that the family Haemogamasidae does not belong to the subfamily Laelapidae.
Collapse
Affiliation(s)
- Hui-Juan Yang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan 671000, China
| | - Zhi-Hua Yang
- School of Foreign Languages, Dali University, Dali 671000, China
| | | | - Wen-Ge Dong
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan 671000, China
| |
Collapse
|
7
|
Tsz Long Wong D, Norman H, Creedy TJ, Jordaens K, Moran KM, Young A, Mengual X, Skevington JH, Vogler AP. The phylogeny and evolutionary ecology of hoverflies (Diptera: Syrphidae) inferred from mitochondrial genomes. Mol Phylogenet Evol 2023; 184:107759. [PMID: 36921697 DOI: 10.1016/j.ympev.2023.107759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Hoverflies (Diptera: Syrphidae) are a diverse group of pollinators and a major research focus in ecology, but their phylogenetic relationships remain incompletely known. Using a genome skimming approach we generated mitochondrial genomes for 91 species, capturing a wide taxonomic diversity of the family. To reduce the required amount of input DNA and overall cost of the library construction, sequencing and assembly was conducted on mixtures of specimens, which raises the problem of chimera formation of mitogenomes. We present a novel chimera detection test based on gene tree incongruence, but identified only a single mitogenome of chimeric origin. Together with existing data for a final set of 127 taxa, phylogenetic analysis on nucleotide and amino acid sequences using Maximum Likelihood and Bayesian Inference revealed a basal split of Microdontinae from all other syrphids. The remainder consists of several deep clades assigned to the subfamily Eristalinae in the current classification, including a clade comprising the subfamily Syrphinae (plus Pipizinae). These findings call for a re-definition of subfamilies, but basal nodes had insufficient support to allow such action. Molecular-clock dating placed the origin of the Syrphidae crown group in the mid-Cretaceous while the Eristalinae-Syrphinae clade likely originated near the K/Pg boundary. Transformation of larval life history characters on the tree suggests that Syrphidae initially had sap feeding larvae, which diversified greatly in diet and habitat association during the Eocene and Oligocene, coinciding with the diversification of angiosperms and the evolution of various insect groups used as larval host, prey, or mimicry models. Mitogenomes proved to be a powerful phylogenetic marker for studies of Syrphidae at subfamily and tribe levels, allowing dense taxon sampling that provided insight into the great ecological diversity and rapid evolution of larval life history traits of the hoverflies.
Collapse
Affiliation(s)
- Daniel Tsz Long Wong
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Hannah Norman
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Thomas J Creedy
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Kurt Jordaens
- Department of Biology-Invertebrates Unit, Royal Museum for Central Africa, Joint Experimental Molecular Unit Leuvensesteenweg 13, B-3080 Tervuren, Belgium.
| | - Kevin M Moran
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Andrew Young
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada.
| | - Ximo Mengual
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany.
| | - Jeffrey H Skevington
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Alfried P Vogler
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| |
Collapse
|