1
|
Todd E, Orr R, Gamage E, West E, Jabeen T, McGuinness AJ, George V, Phuong-Nguyen K, Voglsanger LM, Jennings L, Angwenyi L, Taylor S, Khosravi A, Jacka F, Dawson SL. Lifestyle factors and other predictors of common mental disorders in diagnostic machine learning studies: A systematic review. Comput Biol Med 2025; 185:109521. [PMID: 39667056 DOI: 10.1016/j.compbiomed.2024.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Machine Learning (ML) models have been used to predict common mental disorders (CMDs) and may provide insights into the key modifiable factors that can identify and predict CMD risk and be targeted through interventions. This systematic review aimed to synthesise evidence from ML studies predicting CMDs, evaluate their performance, and establish the potential benefit of incorporating lifestyle data in ML models alongside biological and/or demographic-environmental factors. METHODS This systematic review adheres to the PRISMA statement (Prospero CRD42023401194). Databases searched included MEDLINE, EMBASE, PsycInfo, IEEE Xplore, Engineering Village, Web of Science, and Scopus from database inception to 28/08/24. Included studies used ML methods with feature importance to predict CMDs in adults. Risk of bias (ROB) was assessed using PROBAST. Model performance metrics were compared. The ten most important variables reported by each study were assigned to broader categories to evaluate their frequency across studies. RESULTS 117 studies were included (111 model development-only, 16 development and validation). Deep learning methods showed best accuracy for predicting CMD cases. Studies commonly incorporated features from multiple categories (n = 56), and frequently identified demographic-environmental predictors in their top ten most important variables (63/69 models). These tended to be in combination with psycho-social and biological variables (n = 15). Lifestyle data were infrequently examined as sole predictors of CMDs across included studies (4.27 %). Studies commonly had high heterogeneity and ROB ratings. CONCLUSION This review is the first to evaluate the utility of diagnostic ML for CMDs, assess their ROB, and evaluate predictor types. CMDs were able to be predicted, however studies had high ROB and lifestyle data were underutilised, precluding full identification of a robust predictor set.
Collapse
Affiliation(s)
- Emma Todd
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Rebecca Orr
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Elizabeth Gamage
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Emma West
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Tabinda Jabeen
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Amelia J McGuinness
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Victoria George
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia; University of Copenhagen, Novo Nordisk Foundation, Centre for Basic Metabolic Research, Blegdamsvej 3A, 2200, København, Denmark
| | - Kate Phuong-Nguyen
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Lara M Voglsanger
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Laura Jennings
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Lisa Angwenyi
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Sabine Taylor
- Macquarie University, Balaclava Rd, Macquarie Park, Sydney, NSW, Australia
| | - Abbas Khosravi
- Deakin University, Institute for Intelligent Systems Research and Innovation, 75 Pigdons Rd, Waurn Ponds, Australia
| | - Felice Jacka
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Samantha L Dawson
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia.
| |
Collapse
|
2
|
Saha DK, Hossain T, Safran M, Alfarhood S, Mridha MF, Che D. Ensemble of hybrid model based technique for early detecting of depression based on SVM and neural networks. Sci Rep 2024; 14:25470. [PMID: 39462047 PMCID: PMC11513093 DOI: 10.1038/s41598-024-77193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The prevalence of depression has increased dramatically over the last several decades: it is frequently overlooked and can have a significant impact on both physical and mental health. Therefore, it is crucial to develop an automated detection system that can instantly identify whether a person is depressed. Currently, machine learning (ML) and artificial neural networks (ANNs) are among the most promising approaches for developing automated computer-based systems to predict several mental health issues, such as depression. This study propose an ensemble of hybrid model-based techniques that aims to build a strong detection model that considers many psychological and sociodemographic characteristics of an individual to detect whether a person is depressed. Support vector machines (SVM) and multilayer perceptrons (MLP) are the two fundamental methods used to construct the suggested ensemble approach. The hybrid DeprMVM served as a meta-learner. In this study, the hybrid DeprMVM is a level-1 learner, whereas the SVM and MLP networks are level-0 learners. After the classifiers are trained and tested at level 0, their outputs are based on both the independent and dependent variables in the new data set that was used to train the meta-classifier. The training data class imbalance was reduced by applying the synthetic minority oversampling technique (SMOTE) and cluster sampling together, which improved the accuracy for detecting depression. Additionally, it can effectively reduce the risk of over-fitting from simply duplicating data points. To further confirm the effectiveness of the proposed method, various performance evaluation metrics were calculated and compared with previous studies conducted on this specific dataset. In conclusion, among all the techniques for identifying depression, the suggested ensemble approach had the best accuracy, at 99.39%, and an F1-score of 99.51%.
Collapse
Affiliation(s)
- Dip Kumar Saha
- Department of Computer Science, American International University-Bangladesh, 1229, Dhaka, Bangladesh
| | - Tuhin Hossain
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Mejdl Safran
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, 11543, Riyadh, Saudi Arabia.
| | - Sultan Alfarhood
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, 11543, Riyadh, Saudi Arabia
| | - M F Mridha
- Department of Computer Science, American International University-Bangladesh, 1229, Dhaka, Bangladesh.
| | - Dunren Che
- Department of Electrical Engineering and Computer Science, Texas A\M University-Kingsville, 78363, Kingsville, TX, USA
| |
Collapse
|
3
|
Lee TR, Kim GH, Choi MT. Geriatric depression and anxiety screening via deep learning using activity tracking and sleep data. Int J Geriatr Psychiatry 2024; 39:e6071. [PMID: 38372966 DOI: 10.1002/gps.6071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Geriatric depression and anxiety have been identified as mood disorders commonly associated with the onset of dementia. Currently, the diagnosis of geriatric depression and anxiety relies on self-reported assessments for primary screening purposes, which is uncomfortable for older adults and can be prone to misreporting. When a more precise diagnosis is needed, additional methods such as in-depth interviews or functional magnetic resonance imaging are used. However, these methods can not only be time-consuming and costly but also require systematic and cost-effective approaches. OBJECTIVE The main objective of this study was to investigate the feasibility of training an end-to-end deep learning (DL) model by directly inputting time-series activity tracking and sleep data obtained from consumer-grade wrist-worn activity trackers to identify comorbid depression and anxiety. METHODS To enhance accuracy, the input of the DL model consisted of step counts and sleep stages as time series data, along with minimal depression and anxiety assessment scores as non-time-series data. The basic structure of the DL model was designed to process mixed-input data and perform multi-label-based classification for depression and anxiety. Various DL models, including the convolutional neural network (CNN) and long short-term memory (LSTM), were applied to process the time-series data, and model selection was conducted by comparing the performances of the hyperparameters. RESULTS This study achieved significant results in the multi-label classification of depression and anxiety, with a Hamming loss score of 0.0946 in the Residual Network (ResNet), by applying a mixed-input DL model based on activity tracking data. The comparison of hyper-parameter performance and the development of various DL models, such as CNN, LSTM, and ResNet contributed to the optimization of time series data processing and achievement of meaningful results. CONCLUSIONS This study can be considered as the first to develop a mixed-input DL model based on activity tracking data for the multi-label identification of late-life depression and anxiety. The findings of the study demonstrate the feasibility and potential of using consumer-grade wrist-worn activity trackers in conjunction with DL models to improve the identification of comorbid mental health conditions in older adults. The study also established a multi-label classification framework for identifying the complex symptoms of depression and anxiety.
Collapse
Affiliation(s)
- Tae-Rim Lee
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Korea
| | - Geon Ha Kim
- Department of Neurology, EWHA Womans University Mokdong Hospital, EWHA Womans University College of Medicine, Seoul, Korea
| | - Mun-Taek Choi
- Department of Intelligent Robotics, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|