1
|
Kumar M, Sachan RSK, Kauts S, Karnwal A, Mahmoud AED. Unlocking sustainable solutions: wood waste as a novel substrate for polyhydroxybutyrate (PHB) production to combat plastic pollution. ENVIRONMENTAL TECHNOLOGY 2025; 46:1909-1921. [PMID: 39390695 DOI: 10.1080/09593330.2024.2409994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Polyhydroxybutyrate (PHB) is considered as a hope for bioplastic production, which can serve as a sustainable alternative. Utilizing feedstock as substrate is widely explored for the production but wood waste, which is abundant in cellulose, hemicellulose and lignocellulose, has limited studies for PHB production. Herein, wood waste is used as a biobased feedstock Hydrolyses of wood waste was done using sulphuric acid (H2SO4) to break down of cellulose and hemicellulose into simple carbon forms. The hydrolysed product was analysed for sugar presence by quantitative and qualitative methods. Pseudomonas fluorescens bacterial strain was used for the production purpose using hydrolysed wood waste as substrate media. The Plackett-Burman design (PBD) and response surface methodology (RSM) were applied to optimize the growth media. The results of PBD were used to identify significant factors influencing PHB production, which were then further optimized using RSM. The work's results conclusively demonstrated that P. fluorescens possesses the capability to effectively utilize wood waste and wastewater as substrate media up to production rate of 13-14 mg mL-1 of PHB. Fourier Transformed Infra-Red (FTIR) spectroscopic peaks confirm the produced product is PHB, which is a type of polyhydroxyalkanoate (PHA), classified within the polyester family highlighting wood waste potential as a sustainable solution to address plastic pollution.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Rohan Samir Kumar Sachan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Simran Kauts
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Arun Karnwal
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Fonseca TAH, Von Rekowski CP, Araújo R, Oliveira MC, Justino GC, Bento L, Calado CRC. Comparison of two metabolomics-platforms to discover biomarkers in critically ill patients from serum analysis. Comput Biol Med 2025; 184:109393. [PMID: 39549530 DOI: 10.1016/j.compbiomed.2024.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Serum metabolome analysis is essential for identifying disease biomarkers and predicting patient outcomes in precision medicine. Thus, this study aims to compare Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) with Fourier Transform Infrared (FTIR) spectroscopy in acquiring the serum metabolome of critically ill patients, associated with invasive mechanical ventilation (IMV), and predicting death. Three groups of 8 patients were considered. Group A did not require IMV and survived hospitalization, while Groups B and C required IMV. Group C patients died a median of 5 days after sample harvest. Good prediction models were achieved when comparing groups A to B and B to C using both platforms' data, with UHPLC-HRMS showing 8-17 % higher accuracies (≥83 %). However, developing predictive models using metabolite sets was not feasible when comparing unbalanced populations, i.e., Groups A and B combined to Group C. Alternatively, FTIR-spectroscopy enabled the development of a model with 83 % accuracy. Overall, UHPLC-HRMS data yields more robust prediction models when comparing homogenous populations, potentially enhancing understanding of metabolic mechanisms and improving patient therapy adjustments. FTIR-spectroscopy is more suitable for unbalanced populations. Its simplicity, speed, cost-effectiveness, and high-throughput operation make it ideal for large-scale studies and clinical translation in complex populations.
Collapse
Affiliation(s)
- Tiago A H Fonseca
- NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal; CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal.
| | - Cristiana P Von Rekowski
- NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal; CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal.
| | - Rúben Araújo
- NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal; CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal.
| | - M Conceição Oliveira
- Centro de Química Estrutural - Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| | - Gonçalo C Justino
- Centro de Química Estrutural - Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| | - Luís Bento
- Intensive Care Department, ULSSJ - Unidade Local de Saúde de São José, Rua José António Serrano, 1150-199, Lisbon, Portugal; Integrated Pathophysiological Mechanisms, CHRC - Comprehensive Health Research Centre, NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056, Lisbon, Portugal.
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal; IBB-Institute for Bioengineering and Biosciences, The Associate Laboratory Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
3
|
Abd-El-Haleem DAM, Elkatory MR, Abu-Elreesh GM. Uncovering novel polyhydroxyalkanoate biosynthesis genes and unique pathway in yeast hanseniaspora valbyensis for sustainable bioplastic production. Sci Rep 2024; 14:27162. [PMID: 39511267 PMCID: PMC11544117 DOI: 10.1038/s41598-024-77382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
This study delves into the exploration of polyhydroxyalkanoate (PHA) biosynthesis genes within wild-type yeast strains, spotlighting the exceptional capabilities of isolate DMG-2. Through meticulous screening, DMG-2 emerged as a standout candidate, showcasing vivid red fluorescence indicative of prolific intracellular PHA granules. Characterization via FTIR spectroscopy unveiled a diverse biopolymer composition within DMG-2, featuring distinct functional groups associated with PHA and polyphosphate. Phylogenetic analysis placed DMG-2 within the Hanseniaspora valbyensis NRRL Y-1626 group, highlighting its distinct taxonomic classification. Subsequent investigation into DMG-2's PHA biosynthesis genes yielded promising outcomes, with successful cloning and efficient PHA accumulation confirmed in transgenic E. coli cells. Protein analysis of ORF1 revealed its involvement in sugar metabolism, supported by its cellular localization and identification of functional motifs. Genomic analysis revealed regulatory elements within ORF1, shedding light on potential splice junctions and transcriptional networks influencing PHA synthesis pathways. Spectroscopic analysis of the biopolymer extracted from transgenic E. coli DMG2-1 provided insights into its co-polymer nature, comprising segments of PHB, PHV, and polyphosphate. GC-MS analysis further elucidated the intricate molecular architecture of the polymer. In conclusion, this study represents a pioneering endeavor in exploring PHA biosynthesis genes within yeast cells, with isolate DMG-2 demonstrating remarkable potential. The findings offer valuable insights for advancing sustainable bioplastic production and hold significant implications for biotechnological applications.
Collapse
Affiliation(s)
- Desouky A M Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt.
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications SRTA-City, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Gadallah M Abu-Elreesh
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt
| |
Collapse
|
4
|
Sachan RSK, Devgon I, Sharma V, Perveen K, Bukhari NA, Alsulami JA, Jadon VS, Suyal DC, Karnwal A. Investigating chemical pre-treatment methods: Valorization of wheat straw to enhance polyhydroxyalkanoate (PHA) production with novel isolate Bacillus paranthracis RSKS-3. Heliyon 2024; 10:e31572. [PMID: 38828345 PMCID: PMC11140699 DOI: 10.1016/j.heliyon.2024.e31572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/03/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024] Open
Abstract
Wheat is a crucial food crop worldwide, generating straw upon post-harvest. The straw is often burned to enhance soil fertility, leading to massive air pollution. In this study, wheat straw was investigated for the production of Polyhydroxyalkanoate (PHA) using the novel isolate Bacillus paranthracis RSKS-3. The wheat straw was pulverized and valorized with different acids (2 % and 4 % H2SO4, acetic acid, and hydrochloric acid) and alkalis (2 % and 4 % NaOH, calcium carbonate, and potassium hydroxide). The validation of carbohydrates was done using the Molisch test by analyzing purple-ring production and the DNS test which concluded 4 % H2SO4 as an effective treatment with a maximal sugar yield of 5.04 mg/mL at P < 0.05. The bioconversion efficiency of the extract to PHA resulted in 0.87 g/L by Bacillus paranthracis RSKS-3, later characterized by Ultraviolet (UV)-spectroscopy and FT-IR assessment. The findings of the research offer a potential strategy to mitigate airborne pollutants that result from smouldering wheat straw, thereby contributing significant improvements to sustainable development.
Collapse
Affiliation(s)
- Rohan Samir Kumar Sachan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vikas Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Najat A. Bukhari
- Department of Botany & Microbiology, College of Science, P.O. Box-22452, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Jamilah A. Alsulami
- Microbiology Department, Howard University, 2400 Sixth Street, N.W, Washington, DC, 20059, USA
| | - Vikash Singh Jadon
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun, India
| | - Deep Chandra Suyal
- Vidyadayini Institute of Science, Management and Technology, Sajjan Singh Nagar, Raisen Rd, Opposite Patel Nagar, Bhopal, Madhya Pradesh, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
5
|
O'Connor E, Micklefield J, Cai Y. Searching for the optimal microbial factory: high-throughput biosensors and analytical techniques for screening small molecules. Curr Opin Biotechnol 2024; 87:103125. [PMID: 38547587 DOI: 10.1016/j.copbio.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/09/2024]
Abstract
High-throughput screening technologies have been lacking in comparison to the plethora of high-throughput genetic diversification techniques developed in biotechnology. This review explores the challenges and advancements in high-throughput screening for high-value natural products, focusing on the critical need to expand ligand targets for biosensors and increase the throughput of analytical techniques in screening microbial cell libraries for optimal strain performance. The engineering techniques to broaden the scope of ligands for biosensors, such as transcription factors, G protein-coupled receptors and riboswitches are discussed. On the other hand, integration of microfluidics with traditional analytical methods is explored, covering fluorescence-activated cell sorting, Raman-activated cell sorting and mass spectrometry, emphasising recent developments in maximising throughput.
Collapse
Affiliation(s)
- Eloise O'Connor
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jason Micklefield
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
6
|
Akulava V, Smirnova M, Byrtusova D, Zimmermann B, Ekeberg D, Kohler A, Blazhko U, Miamin U, Valentovich L, Shapaval V. Explorative characterization and taxonomy-aligned comparison of alterations in lipids and other biomolecules in Antarctic bacteria grown at different temperatures. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13232. [PMID: 38308519 PMCID: PMC10878007 DOI: 10.1111/1758-2229.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Temperature significantly impacts bacterial physiology, metabolism and cell chemistry. In this study, we analysed lipids and the total cellular biochemical profile of 74 fast-growing Antarctic bacteria grown at different temperatures. Fatty acid diversity and temperature-induced alterations aligned with bacterial classification-Gram-groups, phylum, genus and species. Total lipid content, varied from 4% to 19% of cell dry weight, was genus- and species-specific. Most bacteria increased lipid content at lower temperatures. The effect of temperature on the profile was complex and more species-specific, while some common for all bacteria responses were recorded. Gram-negative bacteria adjusted unsaturation and acyl chain length. Gram-positive bacteria adjusted methyl branching (anteiso-/iso-), chain length and unsaturation. Fourier transform infrared spectroscopy analysis revealed Gram-, genus- and species-specific changes in the total cellular biochemical profile triggered by temperature fluctuations. The most significant temperature-related alterations detected on all taxonomy levels were recorded for mixed region 1500-900 cm-1 , specifically the band at 1083 cm-1 related to phosphodiester groups mainly from phospholipids (for Gram-negative bacteria) and teichoic/lipoteichoic acids (for Gram-positive bacteria). Some changes in protein region were detected for a few genera, while the lipid region remained relatively stable despite the temperature fluctuations.
Collapse
Affiliation(s)
- Volha Akulava
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Margarita Smirnova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Dana Byrtusova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Boris Zimmermann
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Achim Kohler
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Uladzislau Blazhko
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | | | - Leonid Valentovich
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Volha Shapaval
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| |
Collapse
|