1
|
Yessayan L, Pino CJ, Humes HD. Extracorporeal therapies in sepsis: a comprehensive review of the Selective Cytopheretic Device, Polymyxin B and Seraph cartridges. Ren Fail 2025; 47:2459349. [PMID: 39962644 PMCID: PMC11837919 DOI: 10.1080/0886022x.2025.2459349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Sepsis, a dysregulated host response to infection, is a leading cause of morbidity and mortality in critically ill patients, despite advancements in antimicrobial therapies. Recent innovations in extracorporeal blood purification therapies, such as the Selective Cytopheretic Device (SCD), Polymyxin B Hemoperfusion Cartridge (PMX-HP), and Seraph 100 Microbind Affinity Blood Filter (Seraph), have demonstrated promising potential as adjuncts to conventional therapies. The SCD targets activated white blood cells, while PMX-HP binds endotoxins in Gram-negative sepsis. The Seraph targets a broad range of pathogens, including viruses, bacteria and fungi. Evidence from several clinical trials and observational studies indicate that these therapies can improve organ function, and potentially improve survival in patients with sepsis. Despite the strong pathophysiological rationale for using these devices in sepsis, conclusive evidence of their effectiveness remains limited. Multicenter randomized controlled trials are currently underway with each of these devices to establish their role in improving patient outcomes. Further research is needed to establish optimal protocols for their initiation, duration, and integration into standard sepsis management.
Collapse
Affiliation(s)
| | | | - H. David Humes
- Innovative BioTherapies, Ann Arbor, MI, USA
- Department of Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Seffer MT, Kielstein JT. [Extracorporeal removal of pathogens using a biomimetic adsorber-A new treatment strategy for the intensive care unit : Seraph® 100 Microbind® Affinity Blood Filter and its fields of application]. Med Klin Intensivmed Notfmed 2025; 120:290-299. [PMID: 38981926 DOI: 10.1007/s00063-024-01153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/31/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND In 2019 the World Health Organization (WHO) listed antimicrobial resistance among the top 10 threats to global health. The Seraph® 100 Microbind® Affinity blood filter (Seraph® 100) has been in use since 2019 to eliminate pathogens from the bloodstream in addition to anti-infective pharmacotherapy. It is the first device used to rapidly and efficiently reduce the number of circulating bacteria and viruses. OBJECTIVE After a background on the concept of extracorporeal pathogen removal in general, this review summarizes the preclinical and clinical data on the Seraph® 100 Affinity Blood Filter. The clinical effect of this treatment and potential therapeutic options are described. METHODS Structured PubMed review including references published up to February 2024. RESULTS Case reports, uncontrolled observational studies and data from registries show widespread clinical use of the Seraph® 100 ranging from difficult to treat bacterial (super) infections to viral infections. The treatment can be done as stand-alone hemoperfusion or in combination with all forms of kidney replacement therapy as well as in extracorporeal membrane oxygenation. CONCLUSION The use of the Seraph® 100 varies in terms of duration, concomitant therapy and clinical settings. Due to the absence of prospective controlled trials the clinical effect cannot be properly evaluated.
Collapse
Affiliation(s)
- Malin-Theres Seffer
- Helmholtz Centre for Infection Research, Microbial Proteomics, Braunschweig, Deutschland
- Medizinische Klinik V Nephrologie | Rheumatologie | Blutreinigungsverfahren, Städtisches Klinikum Braunschweig, Salzdahlumer Str. 90, 38126, Braunschweig, Deutschland
| | - Jan T Kielstein
- Medizinische Klinik V Nephrologie | Rheumatologie | Blutreinigungsverfahren, Städtisches Klinikum Braunschweig, Salzdahlumer Str. 90, 38126, Braunschweig, Deutschland.
| |
Collapse
|
3
|
Seffer MT, Meyer TM, Borchina DN, Kielstein JT, Schmidt JJ. Using the Seraph® 100 Microbind® Affinity blood filter under slow flow conditions through 18 G and 16 G central lines. J Vasc Access 2025; 26:596-600. [PMID: 38415617 DOI: 10.1177/11297298241234073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
INTRODUCTION The Seraph® 100 Microbind® Affinity blood filter (Seraph® 100) has been in use since 2019 for the treatment of fulminant or difficult to treat blood stream infections as an adjunct to pharmacotherapy. In 2020 the device received emergency use authorization by the US Food and Drug Administration for the treatment of critically ill COVID-19 patients with confirmed or imminent respiratory failure. Results of an international registry showed that the Seraph® 100 was operated under blood flow rates of 100-350 mL/min. As those conditions require a large bore central line, a dialysis catheter is currently considered indispensable to operate the Seraph® 100. The use of smaller catheter lumina has neither been evaluated in vitro nor in vivo. METHODS In vitro pressure data before and after the Seraph® 100 at various blood pump rates (prepump line 16 G, postpump line 18 G) with saline and human plasma were obtained. Further, anecdotal flow and pressure data of two patients treated with the Seraph® 100 for a COVID-19 infection are reported. RESULTS At a pump speed of 50 mL/min pre-Seraph® pressure using saline was -70 [-70 to -60] mm Hg. In comparison, using plasma pre-Seraph® pressure was lower at -120 [-120 to -105] mm Hg; p < 0.001 (t-test). The post-Seraph® pressure at 50 mL/min using saline of 120 [110-130] mm Hg was not different from plasma at 130 [120-140] mm Hg, p = 0.152 (t-test). Blood flow rates of 50 mL/min did not lead to preAP levels below -250 mm Hg in the two clinical cases. CONCLUSION Seraph® 100 blood flow rate of 50 mL/min may be achieved using low flow vascular access, allowing to treat a blood volume 72 L in 24 h.
Collapse
Affiliation(s)
- Malin-Theres Seffer
- Medical Clinic V, Nephrology | Rheumatology | Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Torsten M Meyer
- Medical Clinic V, Nephrology | Rheumatology | Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Dan-Nicolae Borchina
- Medical Clinic V, Nephrology | Rheumatology | Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Jan T Kielstein
- Medical Clinic V, Nephrology | Rheumatology | Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Julius J Schmidt
- Deparment of Nephrology and Hypertension, Hannover Medical School, Hannover, Niedersachsen, Germany
| |
Collapse
|
4
|
Chen S, Zhang C, Luo J, Lin Z, Chang T, Dong L, Chen D, Tang ZH. Macrophage activation syndrome in Sepsis: from pathogenesis to clinical management. Inflamm Res 2024; 73:2179-2197. [PMID: 39404874 DOI: 10.1007/s00011-024-01957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Sepsis represents a significant global health and hygiene challenge. Excessive activation of macrophages in sepsis can result in certain patients displaying characteristics akin to those observed in Macrophage Activation Syndrome (MAS). MAS represents a grave immune system disorder characterized by persistent and severe inflammation within the body. In the context of sepsis, MAS presents atypically, leading some researchers to refer to it as Macrophage Activation-Like Syndrome (MALS). However, there are currently no effective treatment measures for this situation. The purpose of this article is to explore potential treatment methods for sepsis-associated MALS. OBJECTIVE The objective of this review is to synthesize the specific pathophysiological mechanisms and treatment strategies of MAS to investigate potential therapeutic approaches for sepsis-associated MALS. METHOD We searched major databases (including PubMed, Web of Science, and Google Scholar etc.) for literature encompassing macrophage activation syndrome and sepsis up to Mar 2024 and combined with studies found in the reference lists of the included studies. CONCLUSION We have synthesized the underlying pathophysiological mechanism of MALS in sepsis, and then summarized the diagnostic criteria and the effects of various treatment modalities utilized in patients with MAS or MALS. In both scenarios, heterogeneous treatment responses resulting from identical treatment approaches were observed. The determination of whether the patient is genuinely experiencing MALS significantly impacts the ultimate outcomes of therapeutic efficacy. In order to tackle this concern, additional clinical trials and research endeavors are imperative.
Collapse
Affiliation(s)
- Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jialiu Luo
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Lin
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Dong
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Conner TL, Vir P, Laing ED, Stewart IJ, Mitre E, Pratt KP. The Seraph 100 ® Microbind Affinity Blood Filter Does Not Alter Levels of Circulating or Mucosal Antibodies in Critical COVID-19 Patients. Antibodies (Basel) 2024; 13:65. [PMID: 39189236 PMCID: PMC11348046 DOI: 10.3390/antib13030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
PURIFY-OBS-1 is an observational study evaluating the safety and efficacy of Seraph 100® Microbind Affinity Blood Filter (Seraph 100) use for COVID-19 patients with respiratory failure admitted to the intensive care unit (ICU). The Seraph 100 is a hemoperfusion device containing heparin-coated beads that can bind to, and reduce levels of, some circulating pathogens and inflammatory molecules. This study evaluated whether treatment with the Seraph 100 affected circulating and mucosal antibody levels in critically ill COVID-19 subjects. SARS-CoV-2 anti-spike and anti-nucleocapsid IgG and IgA levels in serum were evaluated at enrollment and on days 1, 4, 7, and 28 after Seraph 100 application, while anti-spike and nucleocapsid IgG, IgA, and secretory IgA levels in tracheal aspirates were evaluated at enrollment and on days 1, 2, 3, 7, and 28. Serum samples were also collected from the pre- and post-filter lines at 1 and 4 h following Seraph 100 application to evaluate the direct impact of the filter on circulating antibody levels. Treatment with the Seraph 100 did not alter the levels of circulating or mucosal antibodies in critically ill COVID-19 subjects admitted to the ICU.
Collapse
Affiliation(s)
- Tonia L. Conner
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.L.C.); (E.D.L.)
| | - Pooja Vir
- The Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA;
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Eric D. Laing
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.L.C.); (E.D.L.)
| | - Ian J. Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Edward Mitre
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.L.C.); (E.D.L.)
| | - Kathleen P. Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| |
Collapse
|