1
|
Deryabin A, Moraleva A, Dobrochaeva K, Kovaleva D, Rubtsova M, Dontsova O, Rubtsov Y. Human RPF1 and ESF1 in Pre-rRNA Processing and the Assembly of Pre-Ribosomal Particles: A Functional Study. Cells 2024; 13:326. [PMID: 38391939 PMCID: PMC10886481 DOI: 10.3390/cells13040326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Ribosome biogenesis is essential for the functioning of living cells. In higher eukaryotes, this multistep process is tightly controlled and involves a variety of specialized proteins and RNAs. This pool of so-called ribosome biogenesis factors includes diverse proteins with enzymatic and structural functions. Some of them have homologs in yeast S. cerevisiae, and their function can be inferred from the structural and biochemical data obtained for the yeast counterparts. The functions of human proteins RPF1 and ESF1 remain largely unclear, although RPF1 has been recently shown to participate in 60S biogenesis. Both proteins have drawn our attention since they contribute to the early stages of ribosome biogenesis, which are far less studied than the later stages. In this study, we employed the loss-of-function shRNA/siRNA-based approach to the human cell line HEK293 to determine the role of RPF1 and ESF1 in ribosome biogenesis. Downregulating RPF1 and ESF1 significantly changed the pattern of RNA products derived from 47S pre-rRNA. Our findings demonstrate that RPF1 and ESF1 are associated with different pre-ribosomal particles, pre-60S, and pre-40S particles, respectively. Our results allow for speculation about the particular steps of pre-rRNA processing, which highly rely on the RPF1 and ESF1 functions. We suggest that both factors are not directly involved in pre-rRNA cleavage but rather help pre-rRNA to acquire the conformation favoring its cleavage.
Collapse
Affiliation(s)
- Alexander Deryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
| | - Anastasiia Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
- Department of Applied Mathematics, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
| | - Diana Kovaleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
| | - Maria Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yury Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
- N.N.Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
2
|
Chen Y, Liu S, Tan S, Zheng Y, Chen Y, Yang C, Lin S, Mi Y, Li W. KRAS mutations promote the intratumoral colonization of enterotoxigenic bacteroides fragilis in colorectal cancer through the regulation of the miRNA3655/SURF6/IRF7/IFNβ axis. Gut Microbes 2024; 16:2423043. [PMID: 39523457 PMCID: PMC11556274 DOI: 10.1080/19490976.2024.2423043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
KRAS mutations are associated with poor prognosis in colorectal cancer (CRC). Although the association between the gut microbiota and CRC has been extensively documented, it is unclear whether KRAS mutations can regulate the gut microbiota. Metagenomics has identified changes in the diversity of the gut microbiota in CRC due to KRAS mutations. Specifically, KRAS mutations positively correlate with the abundance of the bacteroides. Understanding how to regulate the classic carcinogenic bacterium within the bacteroides, such as enterotoxigenic bacteroides fragilis (ETBF), to enhance treatment efficacy of tumors is a key focus of research. Mechanistically, we found that the reduction of miR3655 is indispensable for KRAS mutation-promoted proliferation of CRC and the abundance of ETBF. miR3655 targets SURF6 to inhibit its transcription. Further transcriptomic sequencing revealed that SURF6 promotes intratumoral colonization of ETBF in CRC by inhibiting the nuclear translocation and transcription levels of the IRF7, affecting the activation of the IFNβ promoter. Regulating miR3655 and SURF6 can promote IFNβ secretion in CRC, directly killing ETBF. These data indicate that KRAS mutations affect the intratumoral colonization of ETBF in CRC through the miR3655/SURF6/IRF7/IFNβ axis. This provides new potential strategies for treating CRC associated with KRAS mutations or high levels of ETBF.
Collapse
Affiliation(s)
- Yizhen Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Shaolin Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Song Tan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Yuanyuan Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Key Laboratory of Geriatrics Diseases, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Yifan Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Changshun Yang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Shengtao Lin
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Yulong Mi
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Weihua Li
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|