1
|
Wang X, Wang Z, Wang W, Liu Z, Ma Z, Guo Y, Su D, Sun Q, Pei D, Duan W, Qiu Y, Wang M, Yang Y, Li W, Liu H, Ma C, Yu M, Yu Y, Chen T, Fu J, Li S, Yu B, Ji Y, Li W, Yan D, Liu X, Li ZC, Zhang Z. IDH-mutant glioma risk stratification via whole slide images: Identifying pathological feature associations. iScience 2025; 28:111605. [PMID: 39845415 PMCID: PMC11751506 DOI: 10.1016/j.isci.2024.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/12/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
This article aims to develop and validate a pathological prognostic model for predicting prognosis in patients with isocitrate dehydrogenase (IDH)-mutant gliomas and reveal the biological underpinning of the prognostic pathological features. The pathomic model was constructed based on whole slide images (WSIs) from a training set (N = 486) and evaluated on internal validation set (N = 209), HPPH validation set (N = 54), and TCGA validation set (N = 352). Biological implications of PathScore and individual pathomic features were identified by pathogenomics set (N = 100). The WSI-based pathological signature was an independent prognostic factor. Incorporating the pathological features into a clinical model resulted in a pathological-clinical model that predicted survival better than either the pathological model or clinical model alone. Ten categories of pathways (metabolism, proliferation, immunity, DNA damage response, disease, migrate, protein modification, synapse, transcription and translation, and complex cellular functions) were significantly correlated with the WSI-based pathological features.
Collapse
Affiliation(s)
- Xiaotao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Dingyuan Su
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongqiang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Caoyuan Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miaomiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yinhui Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Te Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Fu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sen Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Caputo A, Pisapia P, L'Imperio V. Current role of cytopathology in the molecular and computational era: The perspective of young pathologists. Cancer Cytopathol 2024; 132:678-685. [PMID: 38748507 DOI: 10.1002/cncy.22832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 11/03/2024]
Abstract
Cytopathology represents a well established diagnostic approach because of its limited cost, reliability, and minimal invasiveness with respect to other methodologies. The evolving complexity of the different classifications systems and the implementation of ancillary techniques to refine the diagnosis is progressively helping in the risk of malignancy stratification, and the adoption of next-generation sequencing techniques contributes to enrich this valuable tool with predictive information, which is always more essential in the tailored medicine era. The recent introduction of digital and computational pathology is further boosting the potentialities of cytopathology, aiding in the interpretation of samples to improve the cost effectiveness of large screening programs and the diagnostic efficiency within intermediate/atypical categories. Moreover, the adoption of artificial intelligence tools is promising to complement molecular investigations, representing a stimulating perspective in the cytopathology field. In this work, the authors tried to summarize the multifaceted nature of this complex and evolving field of pathology, synthesizing the most recent advances and providing the young pathologists' perspective on this fascinating world.
Collapse
Affiliation(s)
- Alessandro Caputo
- Department of Medicine and Surgery, University of Salerno, Fisciano, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Yuan L, Shen Z, Shan Y, Zhu J, Wang Q, Lu Y, Shi H. Unveiling the landscape of pathomics in personalized immunotherapy for lung cancer: a bibliometric analysis. Front Oncol 2024; 14:1432212. [PMID: 39040448 PMCID: PMC11260632 DOI: 10.3389/fonc.2024.1432212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Background Pathomics has emerged as a promising biomarker that could facilitate personalized immunotherapy in lung cancer. It is essential to elucidate the global research trends and emerging prospects in this domain. Methods The annual distribution, journals, authors, countries, institutions, and keywords of articles published between 2018 and 2023 were visualized and analyzed using CiteSpace and other bibliometric tools. Results A total of 109 relevant articles or reviews were included, demonstrating an overall upward trend; The terms "deep learning", "tumor microenvironment", "biomarkers", "image analysis", "immunotherapy", and "survival prediction", etc. are hot keywords in this field. Conclusion In future research endeavors, advanced methodologies involving artificial intelligence and pathomics will be deployed for the digital analysis of tumor tissues and the tumor microenvironment in lung cancer patients, leveraging histopathological tissue sections. Through the integration of comprehensive multi-omics data, this strategy aims to enhance the depth of assessment, characterization, and understanding of the tumor microenvironment, thereby elucidating a broader spectrum of tumor features. Consequently, the development of a multimodal fusion model will ensue, enabling precise evaluation of personalized immunotherapy efficacy and prognosis for lung cancer patients, potentially establishing a pivotal frontier in this domain of investigation.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Zhiming Shen
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yibo Shan
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Jianwei Zhu
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Qi Wang
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yi Lu
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Bao Z, Du J, Zheng Y, Guo Q, Ji R. Deep learning or radiomics based on CT for predicting the response of gastric cancer to neoadjuvant chemotherapy: a meta-analysis and systematic review. Front Oncol 2024; 14:1363812. [PMID: 38601765 PMCID: PMC11004479 DOI: 10.3389/fonc.2024.1363812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Background Artificial intelligence (AI) models, clinical models (CM), and the integrated model (IM) are utilized to evaluate the response to neoadjuvant chemotherapy (NACT) in patients diagnosed with gastric cancer. Objective The objective is to identify the diagnostic test of the AI model and to compare the accuracy of AI, CM, and IM through a comprehensive summary of head-to-head comparative studies. Methods PubMed, Web of Science, Cochrane Library, and Embase were systematically searched until September 5, 2023, to compile English language studies without regional restrictions. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) criteria. Forest plots were utilized to illustrate the findings of diagnostic accuracy, while Hierarchical Summary Receiver Operating Characteristic curves were generated to estimate sensitivity (SEN) and specificity (SPE). Meta-regression was applied to analyze heterogeneity across the studies. To assess the presence of publication bias, Deeks' funnel plot and an asymmetry test were employed. Results A total of 9 studies, comprising 3313 patients, were included for the AI model, with 7 head-to-head comparative studies involving 2699 patients. Across the 9 studies, the pooled SEN for the AI model was 0.75 (95% confidence interval (CI): 0.66, 0.82), and SPE was 0.77 (95% CI: 0.69, 0.84). Meta-regression was conducted, revealing that the cut-off value, approach to predicting response, and gold standard might be sources of heterogeneity. In the head-to-head comparative studies, the pooled SEN for AI was 0.77 (95% CI: 0.69, 0.84) with SPE at 0.79 (95% CI: 0.70, 0.85). For CM, the pooled SEN was 0.67 (95% CI: 0.57, 0.77) with SPE at 0.59 (95% CI: 0.54, 0.64), while for IM, the pooled SEN was 0.83 (95% CI: 0.79, 0.86) with SPE at 0.69 (95% CI: 0.56, 0.79). Notably, there was no statistical difference, except that IM exhibited higher SEN than AI, while maintaining a similar level of SPE in pairwise comparisons. In the Receiver Operating Characteristic analysis subgroup, the CT-based Deep Learning (DL) subgroup, and the National Comprehensive Cancer Network (NCCN) guideline subgroup, the AI model exhibited higher SEN but lower SPE compared to the IM. Conversely, in the training cohort subgroup and the internal validation cohort subgroup, the AI model demonstrated lower SEN but higher SPE than the IM. The subgroup analysis underscored that factors such as the number of cohorts, cohort type, cut-off value, approach to predicting response, and choice of gold standard could impact the reliability and robustness of the results. Conclusion AI has demonstrated its viability as a tool for predicting the response of GC patients to NACT Furthermore, CT-based DL model in AI was sensitive to extract tumor features and predict the response. The results of subgroup analysis also supported the above conclusions. Large-scale rigorously designed diagnostic accuracy studies and head-to-head comparative studies are anticipated. Systematic review registration PROSPERO, CRD42022377030.
Collapse
Affiliation(s)
- Zhixian Bao
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Department of Gastroenterology, Xi’an NO.1 Hospital, Xi’an, Shaanxi, China
| | - Jie Du
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Fiste O, Gkiozos I, Charpidou A, Syrigos NK. Artificial Intelligence-Based Treatment Decisions: A New Era for NSCLC. Cancers (Basel) 2024; 16:831. [PMID: 38398222 PMCID: PMC10887017 DOI: 10.3390/cancers16040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality among women and men, in developed countries, despite the public health interventions including tobacco-free campaigns, screening and early detection methods, recent therapeutic advances, and ongoing intense research on novel antineoplastic modalities. Targeting oncogenic driver mutations and immune checkpoint inhibition has indeed revolutionized NSCLC treatment, yet there still remains the unmet need for robust and standardized predictive biomarkers to accurately inform clinical decisions. Artificial intelligence (AI) represents the computer-based science concerned with large datasets for complex problem-solving. Its concept has brought a paradigm shift in oncology considering its immense potential for improved diagnosis, treatment guidance, and prognosis. In this review, we present the current state of AI-driven applications on NSCLC management, with a particular focus on radiomics and pathomics, and critically discuss both the existing limitations and future directions in this field. The thoracic oncology community should not be discouraged by the likely long road of AI implementation into daily clinical practice, as its transformative impact on personalized treatment approaches is undeniable.
Collapse
Affiliation(s)
- Oraianthi Fiste
- Oncology Unit, Third Department of Internal Medicine and Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.G.); (A.C.); (N.K.S.)
| | | | | | | |
Collapse
|
6
|
Rethemiotaki I. Brain tumour detection from magnetic resonance imaging using convolutional neural networks. Contemp Oncol (Pozn) 2024; 27:230-241. [PMID: 38405206 PMCID: PMC10883197 DOI: 10.5114/wo.2023.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The aim of this work is to detect and classify brain tumours using computational intelligence techniques on magnetic resonance imaging (MRI) images. Material and methods A dataset of 3264 MRI brain images consisting of 4 categories: unspecified glioma, meningioma, pituitary, and healthy brain, was used in this study. Twelve convolutional neural networks (GoogleNet, MobileNetV2, Xception, DesNet-BC, ResNet 50, SqueezeNet, ShuffleNet, VGG-16, AlexNet, Enet, EfficientB0, and MobileNetV2 with meta pseudo-labels) were used to classify gliomas, meningiomas, pituitary tumours, and healthy brains to find the most appropriate model. The experiments included image preprocessing and hyperparameter tuning. The performance of each neural network was evaluated based on accuracy, precision, recall, and F-measure for each type of brain tumour. Results The experimental results show that the MobileNetV2 convolutional neural network (CNN) model was able to diagnose brain tumours with 99% accuracy, 98% recall, and 99% F1 score. On the other hand, the validation data analysis shows that the CNN model GoogleNet has the highest accuracy (97%) among CNNs and seems to be the best choice for brain tumour classification. Conclusions The results of this work highlight the importance of artificial intelligence and machine learning for brain tumour prediction. Furthermore, this study achieved the highest accuracy in brain tumour classification to date, and it is also the only study to compare the performance of so many neural networks simultaneously.
Collapse
Affiliation(s)
- Irene Rethemiotaki
- School of Electrical and Computer Engineering, Technical University of Crete, Chania, Crete, Greece
| |
Collapse
|