1
|
Nguyen QH, Nguyen TVA, Bañuls A. Multi-drug resistance and compensatory mutations in Mycobacterium tuberculosis in Vietnam. Trop Med Int Health 2025; 30:426-436. [PMID: 40078052 PMCID: PMC12050163 DOI: 10.1111/tmi.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
BACKGROUND Vietnam is a hotspot for the emergence and spread of multidrug-resistant Mycobacterium tuberculosis. This study aimed to perform a retrospective study on the compensatory evolution in multidrug-resistant M. tuberculosis strains and the association with drug-resistant mutations and M. tuberculosis genotypes. METHODS Hundred and seventy-three strains resistant to rifampicin (n = 126) and/or isoniazid (n = 170) (multidrug-resistant = 123) were selected according to different drug-resistant patterns and genotypes. The genes/promoter regions including rpoA, rpoB, rpoC, katG, inhA, inhA promoter, ahpC, ahpC promoter, gyrA, gyrB, and rrs were sequenced for each strain. RESULTS Frequency of rifampicin- and isoniazid-resistant mutations in multidrug-resistant strains was 99.2% and 97.0%, respectively. Mutations associated with low -high levels of drug resistance with low- or no-fitness costs compared to the wild type, including rpoB_Ser450Leu, katG_Ser315Thr, inhA-15(A-T), gyrA_Asp94Gly, and rrs_A1401GA, accounted for 46.3%, 76.4%, 16.2%, 8.9%, and 11.4%, respectively, in the multidrug-resistant strains. Beijing and Euro-American genotype strains were associated with high-level drug-resistant mutations, rpoB_Ser450Leu, katG_Ser315Thr, and gyrA_Asp94Gly, while East African-Indian genotype strains were associated with low to high-level drug-resistant mutations, rpoB_His445Asp, rpoB_His445Tyr, inhA-15(C-T) and rrs_A1401G. Multidrug-resistant strains (19.5%) harboured compensatory mutations linked to rifampicin resistance in rpoA, rpoB, or rpoC. Notably, the frequency of compensatory mutations in Beijing genotypes was significantly higher than in East African-Indian genotypes (21.1% vs. 3.3%, OR = 7.7; 95% CI = 1.0 to 61.2, p = 0.03). The proportion of multidrug-resistant strains with rpoB_Ser450Leu mutations carrying rpoA-rpoC mutations was higher than that of strains with other rpoB mutations (OR = 5.4; 95% CI = 1.4 to 21.1, p = 0.02) and was associated with Beijing strains. Only 1.2% (2/170) isoniazid-resistant strains carried aphC-52(C-T) mutation in the promoter region of the ahpC gene, which was hypothesised to be the compensatory mutation in isoniazid-resistant strains. Meanwhile, 11 isoniazid-resistant strains carried a katG mutation combined with either inhA-8(T-C) or inhA-15(A-T) mutations and were associated with East African-Indian strains. CONCLUSIONS Mutations associated with high levels of drug resistance without/with low fitness costs (rpoB_Ser450Leu and katG_Ser315Thr) along with compensatory mutations linked to rifampicin resistance were strongly associated with multidrug-resistant M. tuberculosis Beijing strains in Vietnam.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- LMI DRISA, Department of Life SciencesUniversity of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Thi Van Anh Nguyen
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
- Present address:
Foundation for Innovative New Diagnostics (FIND)HanoiVietnam
| | - Anne‐Laure Bañuls
- LMI DRISA, Department of Life SciencesUniversity of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)HanoiVietnam
- MIVEGECUniversity of Montpellier, IRD, CNRSMontpellierFrance
| |
Collapse
|
2
|
Zhang X, Li Z, Tao B, Fu Y, Cui C, Wang F, Li Y, Wang Y, Jiang J, Wang J. Outdoor particulate matter and risk of drug resistance for workers and farmers with pulmonary tuberculosis: a population-based time-series study in Suzhou, China. BMJ Open 2025; 15:e089290. [PMID: 40139714 PMCID: PMC11950948 DOI: 10.1136/bmjopen-2024-089290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVES The detrimental effects of particulate matter (PM) on human health have been widely corroborated. We aimed to examine the association between outdoor PM and the drug resistance risk among workers and farmers with pulmonary tuberculosis (PTB). DESIGN We performed a population-based time-series study using routinely collected meteorological and TB surveillance data. SETTING We selected Suzhou City, China, as the study area. Data on patients with PTB and meteorological factors were extracted from the National Tuberculosis Online Registration System and the China Meteorological Data Sharing Center. PARTICIPANTS This study included 7868 patients with PTB diagnosed from January 2017 to December 2021 in Suzhou. METHODS The generalised additive model was used to estimate the effects of outdoor PM on the drug resistance risk of TB among workers and farmers who typically work outdoors. Moreover, subgroup analyses were carried out to evaluate the associations in different populations and seasons. RESULTS Although there was no significant association between PM with an aerodynamic diameter≤10 µm (PM10) and drug-resistant risk in the overall analysis, subgroup analysis revealed a significant positive association in the winter season. Similarly, PM with an aerodynamic diameter≤2.5 µm (PM2.5) was significantly associated with drug resistance risk among males with a lag of 0-3 days, people ≤60 years with a lag of 0-7 days and in the winter season with a lag of 0-7 days, 0-15 days, 0-90 days or 0-180 days. CONCLUSIONS Outdoor PM10 and PM2.5 were positively related to the drug resistance risk of workers and farmers with PTB. Reducing ambient PM pollution might reduce the burden of TB. Further research is required to verify the association through in vitro experiments and extensive cohort studies.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Tuberculosis Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou, China
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing, China
| | - Zhongqi Li
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bilin Tao
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ying Fu
- Department of Tuberculosis Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Caiyan Cui
- Department of Tuberculosis Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Feixian Wang
- Department of Tuberculosis Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Yun Li
- Department of Tuberculosis Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Yu Wang
- Department of Tuberculosis Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Jun Jiang
- Department of Tuberculosis Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Jianming Wang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Lee MR, Keng LT, Lee MC, Chen JH, Lee CH, Wang JY. Impact of isoniazid monoresistance on overall and vulnerable patient populations in Taiwan. Emerg Microbes Infect 2024; 13:2417855. [PMID: 39404086 PMCID: PMC11504705 DOI: 10.1080/22221751.2024.2417855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Isoniazid is an early bactericidal anti-tuberculosis (TB) agent and isoniazid mono-resistance TB is the most prevalent drug-resistant TB worldwide. Concerns exist regarding whether resistance to isoniazid would lead to delayed culture conversion and worst outcomes. From January 2008 to November 2017, adult culture-positive pulmonary TB patients receiving isoniazid, rifampicin, pyrazinamide, and ethambutol were identified through Taiwan Center for Disease Control database and were followed until the end of 2017. Primary outcomes included time to sputum culture conversion (SCC) within two months. Secondary outcomes included death and unfavourable outcomes at the end of 2nd month. A total of 37,193 drug-susceptible and 2,832 isoniazid monoresistant pulmonary TB patients were identified. Compared with no resistance, isoniazid monoresistance was not associated with a delayed SCC (HR: 0.99, 95% CI: 0.94─1.05, p = 0.8145), a higher risk of 2-month mortality (HR: 1.19, 95% CI: 0.92─1.53, p = 0.1884), and unfavourable outcomes at 2nd month (OR: 1.05, 95% CI: 0.97─1.14, p = 0.2427). Isoniazid monoresistance was associated with delayed SCC (HR: 0.90, 95% CI: 0.83─0.98, p = 0.0099) and a higher risk of unfavourable outcomes (OR:1.18, 95% CI: 1.05─1.32, p = 0.0053) in patients aged between 20 and 65, and delayed SCC in patients without underlying comorbidities (HR: 0.90, 95% CI: 0.81─0.98, p = 0.0237). Isoniazid mono-resistant TB had a comparable outcome with drug-susceptible TB at the end of the intensive phase. Healthy, and non-elderly patients were more likely to had culture persistence, raising concerns about disease transmission in these subgroups and warranting early molecular testing for isoniazid resistance.
Collapse
Affiliation(s)
- Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Li-Ta Keng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Ming-Chia Lee
- Department of Pharmacy, New Taipei City Hospital, New Taipei City, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Nursing, Cardinal Tien College of Healthcare and Management, Taipei, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center, College of Management, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsin Lee
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Division of Pulmonary Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Zallek TA, Turcotte MM. Evolution in Response to Management Increases Invasiveness Among Experimental Populations of Duckweed ( Lemna minor). Evol Appl 2024; 17:e70060. [PMID: 39726738 PMCID: PMC11671222 DOI: 10.1111/eva.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed Lemna minor to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities. We found that evolution in response to management increased invasiveness compared to populations evolved without management. This evolution in response to management had little effect on the impact of the invader on the resident species. These results illustrate the potential eco-evolutionary consequences of management practices. Mitigating evolution to physical removal, in addition to pesticides, may be important to the long-term success of integrated pest management.
Collapse
Affiliation(s)
- Taylor A. Zallek
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Martin M. Turcotte
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Ye Z, Li L, Yang L, Zhuang L, Aspatwar A, Wang L, Gong W. Impact of diabetes mellitus on tuberculosis prevention, diagnosis, and treatment from an immunologic perspective. EXPLORATION (BEIJING, CHINA) 2024; 4:20230138. [PMID: 39439490 PMCID: PMC11491313 DOI: 10.1002/exp.20230138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
The coexistence of diabetes mellitus (DM) and tuberculosis (TB) presents a significant global burden, with DM being recognized as a major risk factor for TB. This review comprehensively analyzes the immunological aspects of DM-TB comorbidity, shedding light on the impact of DM on TB pathogenesis and immune responses. It reveals that high blood glucose levels in TB patients contribute to reduced innate immune cell count, compromised phagocytic function, and delayed antigen presentation. These factors ultimately impair the clearance of Mycobacterium tuberculosis (MTB) and delay adaptive immune responses. With the interaction between TB and DM, there is an increase in inflammation and elevated secretion of pro-inflammatory cytokines by immune cells. This exacerbates the inflammatory response and contributes to poor treatment outcomes in TB. Moreover, the review explores the effects of DM on TB prevention, diagnosis, and treatment. It highlights how poor glycemic control, insulin resistance (IR), DM complications, and genetic factors increase the risk of MTB infection in individuals with DM. Additionally, DM-related immune suppression adversely affects the sensitivity of traditional diagnostic tests for TB, potentially resulting in underdiagnosis and delayed intervention. To mitigate the burden of TB in DM patients, the review emphasizes the need for further research on the mechanisms underlying DM reactivation in latent TB infection (LTBI). It shows how important it is to find and treat LTBI in DM patients as soon as possible and suggests looking into biomarkers that are specific to DM to make diagnosis more accurate.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
- Hebei North UniversityZhangjiakouHebeiChina
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | | | - Ling Yang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Li Zhuang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Ashok Aspatwar
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Liang Wang
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
6
|
Liu D, Zhao B, Zheng Y, Ou X, Wang S, Zhou Y, Song Y, Xia H, Wei Q, Zhao Y. Characterization of isoniazid resistance and genetic mutations in isoniazid-resistant and rifampicin-susceptible Mycobacterium tuberculosis in China. INFECTIOUS MEDICINE 2024; 3:100129. [PMID: 39314806 PMCID: PMC11417578 DOI: 10.1016/j.imj.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Background Patients with tuberculosis resistant to isoniazid but susceptible to rifampicin (Hr-Rs TB) remain a neglected demographic, despite a high disease burden and poor outcomes of these patients. The aim of this study was to investigate the characteristics of isoniazid-resistance-related mutations in Mycobacterium tuberculosis and resistance rates to drugs included in WHO-recommended regimens for Hr-Rs patients. Methods Mycobacterium tuberculosis isolates (n = 4922) obtained from national tuberculosis drug-resistance surveillance were subjected to whole-genome sequencing to identify Hr-Rs strains. The minimal inhibitory concentrations (MICs) were established for the Hr-Rs strains to determine the isoniazid resistance levels. We also identified drug-resistance-associated mutations for five drugs (fluoroquinolones, ethambutol, pyrazinamide, streptomycin, and amikacin) in the Hr-Rs strains. Results Of the 4922 strains, 384 (7.8 %) were Hr-Rs. The subculture of seven strains failed, so 377 (98.2 %) strains underwent phenotypic MIC testing. Among the 384 genotypic Hr-Rs strains, 242 (63.0 %) contained the katG Ser315Thr substitution; 115 (29.9 %) contained the -15C>T in the promoter region of the fabG1 gene; and 16 (4.2 %) contained Ser315Asn in the katG gene. Of the 239 strains with the Ser315Thr substitution, 229 (95.8 %) had MIC ≥ 2 µg/mL, and of the 114 strains with the -15C>T mutation, 103 (90.4 %) had 0.25 µg/mL ≤ MIC ≤ 1 µg/mL. The genotypic resistance rates were 0.8 % (3/384) for pyrazinamide, 2.3 % (9/384) for ethambutol and fluoroquinolones; 39.6 % (152/384) of the strains were resistant to streptomycin, but only 0.5 % (2/384) of the strains were resistant to amikacin. Conclusion Ser315Thr in katG was the predominant mutation conferring the Hr-Rs phenotype, followed by the fabG1 -15C>T mutation. The combination of rifampicin, pyrazinamide, ethambutol, and levofloxacin should be effective in the treatment of patients with Hr-Rs tuberculosis because the resistance rates for these drugs in China are low.
Collapse
Affiliation(s)
- Dongxin Liu
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yang Zheng
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xichao Ou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuanyuan Song
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - YanLin Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
7
|
Shao Z, Tam KKG, Achalla VPK, Woon ECY, Mason AJ, Chow SF, Yam WC, Lam JKW. Synergistic combination of antimicrobial peptide and isoniazid as inhalable dry powder formulation against multi-drug resistant tuberculosis. Int J Pharm 2024; 654:123960. [PMID: 38447778 DOI: 10.1016/j.ijpharm.2024.123960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has posed a serious threat to global public health, and antimicrobial peptides (AMPs) have emerged to be promising candidates to tackle this deadly infectious disease. Previous study has suggested that two AMPs, namely D-LAK120-A and D-LAK120-HP13, can potentiate the effect of isoniazid (INH) against mycobacteria. In this study, the strategy of combining INH and D-LAK peptide as a dry powder formulation for inhalation was explored. The antibacterial effect of INH and D-LAK combination was first evaluated on three MDR clinical isolates of Mycobacteria tuberculosis (Mtb). The minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indexes (FICIs) were determined. The combination was synergistic against Mtb with FICIs ranged from 0.25 to 0.38. The INH and D-LAK peptide at 2:1 mole ratio (equivalent to 1: 10 mass ratio) was identified to be optimal. This ratio was adopted for the preparation of dry powder formulation for pulmonary delivery, with mannitol used as bulking excipient. Spherical particles with mass median aerodynamic diameter (MMAD) of around 5 µm were produced by spray drying. The aerosol performance of the spray dried powder was moderate, as evaluated by the Next Generation Impactor (NGI), with emitted fraction and fine particle fraction of above 70 % and 45 %, respectively. The circular dichroism spectra revealed that both D-LAK peptides retained their secondary structure after spray drying, and the antibacterial effect of the combination against the MDR Mtb clinical isolates was successfully preserved. The combination was found to be effective against MDR Mtb isolates with KatG or InhA mutations. Overall, the synergistic combination of INH with D-LAK peptide formulated as inhaled dry powder offers a new therapeutic approach against MDR-TB.
Collapse
Affiliation(s)
- Zitong Shao
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; UCL School of Pharmacy, University College London, United Kingdom
| | - Kingsley King-Gee Tam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - V P K Achalla
- UCL School of Pharmacy, University College London, United Kingdom
| | - Esther C Y Woon
- UCL School of Pharmacy, University College London, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Wing Cheong Yam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; UCL School of Pharmacy, University College London, United Kingdom; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Dheda K, Mirzayev F, Cirillo DM, Udwadia Z, Dooley KE, Chang KC, Omar SV, Reuter A, Perumal T, Horsburgh CR, Murray M, Lange C. Multidrug-resistant tuberculosis. Nat Rev Dis Primers 2024; 10:22. [PMID: 38523140 DOI: 10.1038/s41572-024-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/26/2024]
Abstract
Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.
Collapse
Affiliation(s)
- Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Fuad Mirzayev
- Global Tuberculosis Programme, WHO, Geneva, Switzerland
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - Zarir Udwadia
- Department of Pulmonology, Hinduja Hospital & Research Center, Mumbai, India
| | - Kelly E Dooley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kwok-Chiu Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong, SAR, China
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Molecular Medicine & Haematology, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Anja Reuter
- Sentinel Project on Paediatric Drug-Resistant Tuberculosis, Boston, MA, USA
| | - Tahlia Perumal
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - C Robert Horsburgh
- Department of Epidemiology, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Megan Murray
- Department of Epidemiology, Harvard Medical School, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), TTU-TB, Borstel, Germany
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
- Department of Paediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
9
|
Li Y, Li Y, Wang T, Li Y, Tao N, Kong X, Zhang Y, Han Q, Liu Y, Li H. Multidrug-resistant Mycobacterium tuberculosis transmission in Shandong, China. Medicine (Baltimore) 2024; 103:e37617. [PMID: 38518003 PMCID: PMC10956945 DOI: 10.1097/md.0000000000037617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/23/2024] [Indexed: 03/24/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has imposed a significant economic and health burden worldwide, notably in China. Using whole genome sequence, we sought to understand the mutation and transmission of MDR-TB in Shandong. A retrospective study of patients diagnosed with pulmonary tuberculosis in Shandong from 2009 to 2018 was conducted. To explore transmission patterns, we performed whole genome sequencing on MDR-TB isolates, identified genomic clusters, and assessed the drug resistance of TB isolates. Our study analyzed 167 isolates of MDR-TB, finding that 100 were clustered. The predominant lineage among MDR-TB isolates was lineage 2, specifically with a notable 88.6% belonging to lineage 2.2.1. Lineage 4 constituted a smaller proportion, accounting for 4.2% of the isolates. We discovered that Shandong has a significant clustering percentage for MDR-TB, with Jining having the highest percentage among all Shandong cities. The clustering percentages of MDR-TB, pre-extensively drug-resistant tuberculosis, and extensively drug-resistant tuberculosis were 59.9%, 66.0%, and 71.4%, respectively, and the clustering percentages increased with the expansion of the anti-TB spectrum. Isolates from genomic clusters 1 and 3 belonged to lineage 2.2.1 and showed signs of cross-regional transmission. The distribution of rrs A1401G and katG S315T mutations in lineage 2.2.1 and 2.2.2 strains differed significantly (P < .05). MDR-TB isolates with rpoB I480V, embA-12C > T, and rrs A1401G mutations showed a higher likelihood of clustering (P < .05). Our findings indicate a significant problem of local transmission of MDR-TB in Shandong, China. Beijing lineage isolates and some drug-resistant mutations account for the MDR-TB transmission in Shandong.
Collapse
Affiliation(s)
- Yingying Li
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifan Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tingting Wang
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yameng Li
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglong Kong
- Shandong Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yuzhen Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qilin Han
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huaichen Li
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Pinhata JMW, Ferrazoli L, Mendes FDF, Gonçalves MG, Rabello MCDS, Ghisi KT, Simonsen V, Cavalin RF, Lindoso AABP, de Oliveira RS. A descriptive study on isoniazid resistance-associated mutations, clustering and treatment outcomes of drug-resistant tuberculosis in a high burden country. Eur J Clin Microbiol Infect Dis 2024; 43:73-85. [PMID: 37943394 DOI: 10.1007/s10096-023-04693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE To describe katG and inhA mutations, clinical characteristics, treatment outcomes and clustering of drug-resistant tuberculosis (TB) in the State of São Paulo, southeast Brazil. METHODS Mycobacterium tuberculosis isolates from patients diagnosed with drug-resistant TB were screened for mutations in katG and inhA genes by line probe assay and Sanger sequencing, and typed by IS6110-restriction fragment-length polymorphism for clustering assessment. Clinical, epidemiological and demographic data were obtained from surveillance information systems for TB. RESULTS Among the 298 isolates studied, 127 (42.6%) were isoniazid-monoresistant, 36 (12.1%) polydrug-resistant, 93 (31.2%) MDR, 16 (5.4%) pre-extensively drug-resistant (pre-XDR), 9 (3%) extensively drug-resistant (XDR) and 17 (5.7%) susceptible after isoniazid retesting. The frequency of katG 315 mutations alone was higher in MDR isolates, while inhA promoter mutations alone were more common in isoniazid-monoresistant isolates. Twenty-six isolates phenotypically resistant to isoniazid had no mutations either in katG or inhA genes. The isolates with inhA mutations were found more frequently in clusters (75%) when compared to the isolates with katG 315 mutations (59.8%, p = 0.04). In our population, being 35-64 years old, presenting MDR-, pre-XDR- or XDR-TB and being a retreatment case were associated with unfavourable TB treatment outcomes. CONCLUSION We found that katG and inhA mutations were not equally distributed between isoniazid-monoresistant and MDR isolates. In our population, clustering was higher for isolates with inhA mutations. Finally, unfavourable TB outcomes were associated with specific factors.
Collapse
Affiliation(s)
- Juliana Maira Watanabe Pinhata
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil.
| | - Lucilaine Ferrazoli
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | - Flávia de Freitas Mendes
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | - Maria Gisele Gonçalves
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | | | - Kelen Teixeira Ghisi
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | - Vera Simonsen
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | | | | | - Rosângela Siqueira de Oliveira
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
11
|
Rehman AU, Khattak M, Mushtaq U, Latif M, Ahmad I, Rasool MF, Shakeel S, Hayat K, Hussain R, Alhazmi GA, Alshomrani AO, Alalawi MI, Alghamdi S, Imam MT, Almarzoky Abuhussain SS, Khayyat SM, Haseeb A. The impact of diabetes mellitus on the emergence of multi-drug resistant tuberculosis and treatment failure in TB-diabetes comorbid patients: a systematic review and meta-analysis. Front Public Health 2023; 11:1244450. [PMID: 38074769 PMCID: PMC10704033 DOI: 10.3389/fpubh.2023.1244450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Background The existence of Type 2 Diabetes Mellitus (DM) in tuberculosis (TB) patients is very dangerous for the health of patients. One of the major concerns is the emergence of MDR-TB in such patients. It is suspected that the development of MDR-TB further worsens the treatment outcomes of TB such as treatment failure and thus, causes disease progression. Aim To investigate the impact of DM on the Emergence of MDR-TB and Treatment Failure in TB-DM comorbid patients. Methodology The PubMed database was systematically searched until April 03, 2022 (date last searched). Thirty studies met the inclusion criteria and were included in this study after a proper selection process. Results Tuberculosis-Diabetes Mellitus patients were at higher risk to develop MDR-TB as compared to TB-non-DM patients (HR 0.81, 95% CI: 0.60-0.96, p < 0.001). Heterogeneity observed among included studies was moderate (I2 = 38%). No significant change was observed in the results after sub-group analysis by study design (HR 0.81, 95% CI: 0.61-0.96, p < 0.000). In the case of treatment failure, TB-DM patients were at higher risk to experience treatment failure rates as compared to TB-non-DM patients (HR 0.46, 95% CI: 0.27-0.67, p < 0.001). Conclusion The results showed that DM had a significant impact on the emergence of MDR-TB in TB-diabetes comorbid patients as compared to TB-non-DM patients. DM enhanced the risk of TB treatment failure rates in TB-diabetes patients as compared to TB-non-DM patients. Our study highlights the need for earlier screening of MDR-TB, thorough MDR-TB monitoring, and designing proper and effective treatment strategies to prevent disease progression.
Collapse
Affiliation(s)
- Anees ur Rehman
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mahnoor Khattak
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Usman Mushtaq
- Nishter Medical University and Hospital, Multan, Pakistan
| | - Muhammad Latif
- Department of Zoology, Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Imran Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Shakeel
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Khezar Hayat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Rabia Hussain
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ghaidaa Ali Alhazmi
- Department of Pharmacy, King Abdullah Medical City, Ministry of Health, Makkah, Saudi Arabia
| | - Afnan Owedah Alshomrani
- Pharmaceutical Care Department, King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Jeddah, Saudi Arabia
| | | | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | | | - Sarah M. Khayyat
- Department of Pharmacy Practice, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdul Haseeb
- Department of Pharmacy Practice, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
12
|
Mejía-Ponce PM, Ramos-González EJ, Ramos-García AA, Lara-Ramírez EE, Soriano-Herrera AR, Medellín-Luna MF, Valdez-Salazar F, Castro-Garay CY, Núñez-Contreras JJ, De Donato-Capote M, Sharma A, Castañeda-Delgado JE, Zenteno-Cuevas R, Enciso-Moreno JA, Licona-Cassani C. Genomic epidemiology analysis of drug-resistant Mycobacterium tuberculosis distributed in Mexico. PLoS One 2023; 18:e0292965. [PMID: 37831695 PMCID: PMC10575498 DOI: 10.1371/journal.pone.0292965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Genomics has significantly revolutionized pathogen surveillance, particularly in epidemiological studies, the detection of drug-resistant strains, and disease control. Despite its potential, the representation of Latin American countries in the genomic catalogues of Mycobacterium tuberculosis (Mtb), the bacteria responsible for Tuberculosis (TB), remains limited. In this study, we present a whole genome sequencing (WGS)-based analysis of 85 Mtb clinical strains from 17 Mexican states, providing insights into local adaptations and drug resistance signatures in the region. Our results reveal that the Euro-American lineage (L4) accounts for 94% of our dataset, showing 4.1.2.1 (Haarlem, n = 32), and 4.1.1.3 (X-type, n = 34) sublineages as the most prevalent. We report the presence of the 4.1.1.3 sublineage, which is endemic to Mexico, in six additional locations beyond previous reports. Phenotypic drug resistance tests showed that 34 out of 85 Mtb samples were resistant, exhibiting a variety of resistance profiles to the first-line antibiotics tested. We observed high levels of discrepancy between phenotype and genotype associated with drug resistance in our dataset, including pyrazinamide-monoresistant Mtb strains lacking canonical variants of drug resistance. Expanding the Latin American Mtb genome databases will enhance our understanding of TB epidemiology and potentially provide new avenues for controlling the disease in the region.
Collapse
Affiliation(s)
- Paulina M. Mejía-Ponce
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, México
| | - Elsy J. Ramos-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Axel A. Ramos-García
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Alma R. Soriano-Herrera
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Mitzy F. Medellín-Luna
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Posgrado en Ciencias Farmacobiológicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Fernando Valdez-Salazar
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Claudia Y. Castro-Garay
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - José J. Núñez-Contreras
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | | | - Ashutosh Sharma
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Consejo Nacional de Ciencia y Tecnología, CONACYT, Ciudad de México, México
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México
- Red Multidisciplinaria de Investigación en Tuberculosis, Ciudad de México, México
| | - Jose Antonio Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Cuauhtémoc Licona-Cassani
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, México
- Red Multidisciplinaria de Investigación en Tuberculosis, Ciudad de México, México
- Division of Integrative Biology, The Institute for Obesity Research, Tecnológico de Monterrey, Nuevo León, México
| |
Collapse
|
13
|
Jeon SM, Park S, Lim NR, Lee N, Jung J, Sung N, Kim S. Molecular Analysis of Anti-Tuberculosis Drug Resistance of Mycobacterium tuberculosis Isolated in the Republic of Korea. Antibiotics (Basel) 2023; 12:1324. [PMID: 37627744 PMCID: PMC10451913 DOI: 10.3390/antibiotics12081324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Rapid and accurate detection of tuberculosis (TB) drug resistance is critical for the successful treatment and control of TB. Here, we investigated resistance to anti-TB drugs and genetic variations in 215 drug-resistant Mycobacterium tuberculosis isolates in Korea. Genetic variations were observed in rpoB Ser531Leu, katG Ser315Thr, and gyrA Asp94Gly; however, the minimum inhibitory concentrations varied, which can be attributed to other resistance mechanisms. Examination of genetic relatedness among drug-resistant isolates revealed that the cluster size of resistant bacteria was less than six strains, suggesting no evidence of a large-scale epidemic caused by a specific strain. However, rpoC mutants of the rifampicin-resistant isolates were composed of five types of clusters, suggesting that these compensatory mutations advance propagation. In the present study, more than 90% of the resistance mechanisms to major anti-TB drugs were identified, and the effect of each mutation on drug resistance was estimated. With the clinical application of recent next-generation sequencing-based susceptibility testing, the present study is expected to improve the clinical utilization of genotype-based drug susceptibility testing for the diagnosis and treatment of patients with drug-resistant TB.
Collapse
Affiliation(s)
- Se-Mi Jeon
- Division of Bacterial Disease Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (S.-M.J.); (S.P.); (N.-R.L.)
| | - Sanghee Park
- Division of Bacterial Disease Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (S.-M.J.); (S.P.); (N.-R.L.)
| | - Na-Ra Lim
- Division of Bacterial Disease Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (S.-M.J.); (S.P.); (N.-R.L.)
| | - Noori Lee
- Clinical Research Center, Masan National Tuberculosis Hospital, Changwon-si 51755, Republic of Korea; (N.L.); (J.J.); (N.S.)
| | - Jihee Jung
- Clinical Research Center, Masan National Tuberculosis Hospital, Changwon-si 51755, Republic of Korea; (N.L.); (J.J.); (N.S.)
| | - Nackmoon Sung
- Clinical Research Center, Masan National Tuberculosis Hospital, Changwon-si 51755, Republic of Korea; (N.L.); (J.J.); (N.S.)
| | - Seonghan Kim
- Division of Bacterial Disease Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea; (S.-M.J.); (S.P.); (N.-R.L.)
| |
Collapse
|
14
|
Moga S, Bobosha K, Fikadu D, Zerihun B, Diriba G, Amare M, Kempker RR, Blumberg HM, Abebe T. Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia. PLoS One 2023; 18:e0284737. [PMID: 37099514 PMCID: PMC10132600 DOI: 10.1371/journal.pone.0284737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/06/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Isoniazid (INH) resistant Mycobacterium tuberculosis (Hr-TB) is the most common type of drug resistant TB, and is defined as M tuberculosis complex (MTBC) strains resistant to INH but susceptible to rifampicin (RIF). Resistance to INH precedes RIF resistance in almost all multidrug resistant TB (MDR-TB) cases, across all MTBC lineages and in all settings. Therefore, early detection of Hr-TB is critical to ensure rapid initiation of appropriate treatment, and to prevent progression to MDR-TB. We assessed the performance of the GenoType MTBDRplus VER 2.0 line probe assay (LPA) in detecting isoniazid resistance among MTBC clinical isolates. METHODS A retrospective study was conducted among M. tuberculosis complex (MTBC) clinical isolates obtained from the third-round Ethiopian national drug resistance survey (DRS) conducted between August 2017 and December 2019. The sensitivity, specificity, positive predictive value, and negative predictive value of the GenoType MTBDRplus VER 2.0 LPA in detecting INH resistance were assessed and compared to phenotypic drug susceptibility testing (DST) using the Mycobacteria Growth Indicator Tube (MGIT) system. Fisher's exact test was performed to compare the performance of LPA between Hr-TB and MDR-TB isolates. RESULTS A total of 137 MTBC isolates were included, of those 62 were Hr-TB, 35 were MDR-TB and 40 were INH susceptible. The sensitivity of the GenoType MTBDRplus VER 2.0 for detecting INH resistance was 77.4% (95% CI: 65.5-86.2) among Hr-TB isolates and 94.3% (95% CI: 80.4-99.4) among MDR-TB isolates (P = 0.04). The specificity of the GenoType MTBDRplus VER 2.0 for detecting INH resistance was 100% (95% CI: 89.6-100). The katG 315 mutation was observed in 71% (n = 44) of Hr-TB phenotypes and 94.3% (n = 33) of MDR-TB phenotypes. Mutation at position-15 of the inhA promoter region alone was detected in four (6.5%) Hr-TB isolates, and concomitantly with katG 315 mutation in one (2.9%) MDR-TB isolate. CONCLUSIONS GenoType MTBDRplus VER 2.0 LPA demonstrated improved performance in detecting INH resistance among MDR-TB cases compared to Hr-TB cases. The katG315 mutation is the most common INH resistance conferring gene among Hr-TB and MDR-TB isolates. Additional INH resistance conferring mutations should be evaluated to improve the sensitivity of the GenoType MTBDRplus VER 2.0 for the detection of INH resistance among Hr-TB cases.
Collapse
Affiliation(s)
- Shewki Moga
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University (AAU), Addis Ababa, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Dinka Fikadu
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | | | - Getu Diriba
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Misikir Amare
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Russell R. Kempker
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Henry M. Blumberg
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Departments of Epidemiology and Global Health, Emory Rollins School of Public Health, Atlanta, Georgia, United States of America
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University (AAU), Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Ejo M, Torrea G, Diro E, Abebe A, Kassa M, Girma Y, Tesfa E, Ejigu K, Uwizeye C, Gehre F, de Jong BC, Rigouts L. Strain diversity and gene mutations associated with presumptive multidrug-resistant Mycobacterium tuberculosis complex isolates in Northwest Ethiopia. J Glob Antimicrob Resist 2023; 32:167-175. [PMID: 36470362 DOI: 10.1016/j.jgar.2022.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/25/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
OBJECTIVES In this study, we assessed the genetic diversity and gene mutations that confer resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolone (FQ), and second-line injectable (SLI) drugs in RIF-resistant (RR)/multidrug-resistant tuberculosis (MDR-TB) isolates in Northwest Ethiopia. METHODS Spoligotyping was used to assign isolates to TB lineages (Ls), and Hain line probe assays were used to detect resistance to RIF, INH, and FQs, and SLIs. RESULTS Among 130 analyzed strains, 68.5% were RR, and four major Mycobacterium tuberculosis complex lineages (L1, L3, L4, and L7) were identified with a predominance of the Euro-American L4 (72, 54.7%), while L7 genotypes were less common (3, 2.3%). Overall, the L4-T3-ETH (41, 32.0%), L3-CAS1-Delhi (29, 22.7%), and L3-CAS1-Killi (19, 14.8%) families were most common. Line probe analysis showed that among rpoB mutants, 65.2% were S450L, while 87.8% of katG mutants were S315T. Only three isolates showed mutation (c-15t) at the inhA gene, and no double mutation with katG and inhA genes was found. Six strains, two each of L1, L3, and L4, were resistant to FQs, having gyrA mutations (D94G, S91P), of which three isolates had additional resistance to SLI (rrs A1401G or C1402T mutations) including one isolate with low-level kanamycin (KAN) resistance. CONCLUSIONS This study showed a predominance of L4-T3-ETH, L3-CAS1-Delhi, and L3-CAS1-Killi families, with a high rate of rpoB_S450L and katG_S315T mutations and a low proportion of gyrA and rrs mutations. L7 was less frequently observed in this study. Further investigations are, therefore, needed to understand L7 and other lineages with undefined mutations.
Collapse
Affiliation(s)
- Mebrat Ejo
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Gondar, Gondar, Ethiopia; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Gabriela Torrea
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ermias Diro
- Department of Internal Medicine, University of Gondar, Gondar, Ethiopia; MDR-TB Treatment and Follow-up Center, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Ayenesh Abebe
- TB culture laboratory, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Meseret Kassa
- TB culture laboratory, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Yilak Girma
- TB culture laboratory, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Eyasu Tesfa
- MDR-TB Treatment and Follow-up Center, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Kefialew Ejigu
- TB culture laboratory, Amhara Public Health Institute, Bahir Dar, Ethiopia
| | - Cecile Uwizeye
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Florian Gehre
- Department of Infectious Disease Epidemiology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany; East African Community Secretariat, Arusha, Tanzania
| | - Bouke C de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol 2022; 12:1027394. [PMID: 36275024 PMCID: PMC9579286 DOI: 10.3389/fcimb.2022.1027394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb) is an ancient disease that has remained a leading cause of infectious death. Mtb has evolved drug resistance to every antibiotic regimen ever introduced, greatly complicating treatment, lowering rates of cure and menacing TB control in parts of the world. As technology has advanced, our understanding of antimicrobial resistance has improved, and our models of the phenomenon have evolved. In this review, we focus on recent research progress that supports an updated model for the evolution of drug resistance in Mtb. We highlight the contribution of drug tolerance on the path to resistance, and the influence of heterogeneity on tolerance. Resistance is likely to remain an issue for as long as drugs are needed to treat TB. However, with technology driving new insights and careful management of newly developed resources, antimicrobial resistance need not continue to threaten global progress against TB, as it has done for decades.
Collapse
Affiliation(s)
| | | | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Guo S, Lei S, Palittapongarnpim P, McNeil E, Chaiprasert A, Li J, Chen H, Ou W, Surachat K, Qin W, Zhang S, Luo R, Chongsuvivatwong V. Association between Mycobacterium tuberculosis genotype and diabetes mellitus/hypertension: a molecular study. BMC Infect Dis 2022; 22:401. [PMID: 35462543 PMCID: PMC9035274 DOI: 10.1186/s12879-022-07344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background A paucity of studies focused on the genetic association that tuberculosis (TB) patients with non-communicable diseases (NCDs) are more likely to be infected with Mycobacterium tuberculosis (MTB) with more potent virulence on anti-TB drug resistance than those without NCDs. The study aimed to document the predominant genotype, determine the association between MTB genotypes and NCD status and drug resistance. Methods We conducted a molecular study in 105 TB patients based on a cross-sectional study focused on the comorbid relationship between chronic conditions and TB among 1773 subjects from September 1, 2019 to August 30, 2020 in Guizhou, China. The participants were investigated through face-to-face interviews, followed by NCDs screening. The DNA of MTB isolates was extracted prior to genotyping using 24 loci MIRU-VNTR. The subsequent evaluations were performed by phylogenetic trees, combined with tests of statistical power, Chi-square or Fisher and multivariate logistic regression analysis. Results The Beijing family of Lineage 2 (East Asia) was the predominant genotype accounting for 43.8% (46/105), followed by Lineage 4 (Euro-America) strains, including Uganda I (34.3%, 36/105), and the NEW-1 (9.5%, 10/105). The proportion of Beijing strain in patients with and without NCDS was 28.6% (8/28) and 49.4% (38/77), respectively, with a statistical power test value of 24.3%. No significant association was detected between MTB genotype and NCD status. A low clustering rate (2.9%) was identified, consisting of two clusters. The rates of global, mono-, poly- and multi-drug resistance were 16.2% (17/105), 14.3% (15/105), 1.0% (1/105) and 4.8% (5/105), respectively. The drug-resistant rates of rifampicin, isoniazid, and streptomycin, were 6.7% (7/105), 11.4% (12/105) and 5.7% (6/105), respectively. Isoniazid resistance was significantly associated with the Beijing genotype of Lineage 2 (19.6% versus 5.1%). Conclusions The Lineage 2 East Asia/Beijing genotype is the dominant genotype of the local MTB with endogenous infection preponderating. Not enough evidence is detected to support the association between the MTB genotype and diabetes/hypertension. Isoniazid resistance is associated with the Lineage 2 East Asia/Beijing strain. Supplementary information The online version contains supplementary material available at 10.1186/s12879-022-07344-z.
Collapse
|
18
|
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol 2022; 20:529-541. [PMID: 35365812 DOI: 10.1038/s41579-022-00721-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - William C Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA. .,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA, USA. .,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
19
|
Nachappa SA, Neelambike SM, Ramachandra NB. Differential expression of the Mycobacterium tuberculosis heat shock protein genes in response to drug-induced stress. Tuberculosis (Edinb) 2022; 134:102201. [PMID: 35344917 DOI: 10.1016/j.tube.2022.102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Heat shock proteins are essential in maintaining cellular protein function, especially during stress. Their influence in managing drug-induced stress in Tuberculosis is not clearly understood. AIMS Study the expression of select genes of the DnaK/ClpB chaperone network to evaluate their role in stress response in Mycobacterium tuberculosis clinical isolates during exposure to Isoniazid (INH) and Rifampicin (RIF). METHODS Sanger sequencing to detect drug-resistant mutations followed by Drug Susceptibility Testing and Minimum Inhibitory Concentration determination. Culturing the bacilli in vitro, exposed to 1/4, 1/2 and 1 × MIC, and RNA quantification of dnaK, dnaJ1, grpE and clpB genes by using Real-time PCR. RESULTS Susceptible isolates showed marginal down-regulation of two genes for INH, whereas all genes under-expressed against RIF. INH-resistant isolates had distinct expression profiles for inhA-15 and katG315 mutants. RIF-resistant bacilli did not have significant differential expression. MDR isolate showed up-regulation of all the four genes, with two genes over-expressing (≥4-fold). CONCLUSIONS We observed characteristic gene expression profiles for each isolate in response to lethal and sub-lethal doses of INH and RIF. This provides insight into the role of DnaK/ClpB chaperone network in managing drug-induced stress and facilitating resistance. Further, the knowledge could provide targets for new drugs and augmenters.
Collapse
Affiliation(s)
- Somanna Ajjamada Nachappa
- Genetics and Genomics Lab, Department of Studies in Genetics and Genomics, University of Mysore, Mysuru, India
| | | | - Nallur B Ramachandra
- Genetics and Genomics Lab, Department of Studies in Genetics and Genomics, University of Mysore, Mysuru, India.
| |
Collapse
|
20
|
Nonghanphithak D, Chaiprasert A, Smithtikarn S, Kamolwat P, Pungrassami P, Chongsuvivatwong V, Mahasirimongkol S, Reechaipichitkul W, Leepiyasakulchai C, Phelan JE, Blair D, Clark TG, Faksri K. Clusters of Drug-Resistant Mycobacterium tuberculosis Detected by Whole-Genome Sequence Analysis of Nationwide Sample, Thailand, 2014-2017. Emerg Infect Dis 2021; 27:813-822. [PMID: 33622486 PMCID: PMC7920678 DOI: 10.3201/eid2703.204364] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Multidrug-resistant tuberculosis (MDR TB), pre-extensively drug-resistant tuberculosis (pre-XDR TB), and extensively drug-resistant tuberculosis (XDR TB) complicate disease control. We analyzed whole-genome sequence data for 579 phenotypically drug-resistant M. tuberculosis isolates (28% of available MDR/pre-XDR and all culturable XDR TB isolates collected in Thailand during 2014–2017). Most isolates were from lineage 2 (n = 482; 83.2%). Cluster analysis revealed that 281/579 isolates (48.5%) formed 89 clusters, including 205 MDR TB, 46 pre-XDR TB, 19 XDR TB, and 11 poly–drug-resistant TB isolates based on genotypic drug resistance. Members of most clusters had the same subset of drug resistance-associated mutations, supporting potential primary resistance in MDR TB (n = 176/205; 85.9%), pre-XDR TB (n = 29/46; 63.0%), and XDR TB (n = 14/19; 73.7%). Thirteen major clades were significantly associated with geography (p<0.001). Clusters of clonal origin contribute greatly to the high prevalence of drug-resistant TB in Thailand.
Collapse
|
21
|
Gygli SM, Loiseau C, Jugheli L, Adamia N, Trauner A, Reinhard M, Ross A, Borrell S, Aspindzelashvili R, Maghradze N, Reither K, Beisel C, Tukvadze N, Avaliani Z, Gagneux S. Prisons as ecological drivers of fitness-compensated multidrug-resistant Mycobacterium tuberculosis. Nat Med 2021; 27:1171-1177. [PMID: 34031604 PMCID: PMC9400913 DOI: 10.1038/s41591-021-01358-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) accounts for one third of the annual deaths due to antimicrobial resistance1. Drug resistance-conferring mutations frequently cause fitness costs in bacteria2-5. Experimental work indicates that these drug resistance-related fitness costs might be mitigated by compensatory mutations6-10. However, the clinical relevance of compensatory evolution remains poorly understood. Here we show that, in the country of Georgia, during a 6-year nationwide study, 63% of MDR-TB was due to patient-to-patient transmission. Compensatory mutations and patient incarceration were independently associated with transmission. Furthermore, compensatory mutations were overrepresented among isolates from incarcerated individuals that also frequently spilled over into the non-incarcerated population. As a result, up to 31% of MDR-TB in Georgia was directly or indirectly linked to prisons. We conclude that prisons fuel the epidemic of MDR-TB in Georgia by acting as ecological drivers of fitness-compensated strains with high transmission potential.
Collapse
Affiliation(s)
- Sebastian M. Gygli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,These authors contributed equally: Sebastian M. Gygli, Chloé Loiseau
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,These authors contributed equally: Sebastian M. Gygli, Chloé Loiseau
| | - Levan Jugheli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Natia Adamia
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Nino Maghradze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Nestani Tukvadze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Correspondence and requests for materials should be addressed to S.G.
| |
Collapse
|
22
|
Alame Emane AK, Guo X, Takiff HE, Liu S. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2021; 129:102091. [PMID: 34090078 DOI: 10.1016/j.tube.2021.102091] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/26/2023]
Abstract
For tuberculosis to be eradicated, the transmission of Multi-Drug-Resistant and eXtensively Drug Resistant strains of Mycobacterium tuberculosis (MDR and XDR-TB) must be considerably reduced. Drug resistant strains were initially thought to have reduced fitness, and the majority of resistant strains may actually have compromised fitness because they are found in only one or a few patients. In contrast, some MDR/XDR-TB strains are highly transmitted and cause large outbreaks. Most antibiotics target essential bacterial functions and the mutations that confer resistance to anti-TB drugs can incur fitness costs manifested as slower growth and reduced viability. The fitness costs vary with different resistance mutations and the bacilli can also accumulate secondary mutations that compensate for the compromised functions and partially or fully restore lost fitness. The compensatory mutations (CM) are different for each antibiotic, as they mitigate the deleterious effects of the specific functions compromised by the resistance mutations. CM are generally more common in strains with resistance mutations incurring the greatest fitness costs, but for RIF resistance, CM are most frequent in strains with the mutation carrying the least fitness cost, Ser450Leu. Here, we review what is known about fitness costs, CM and mechanisms of resistance to the drugs that define a strain as MDR or XDR-TB. The relative fitness costs of the resistance mutations and the mitigating effects of CM largely explain why certain mutations are frequently found in highly transmitted clusters while others are less frequently, rarely or never found in clinical isolates. The CM illustrate how drug resistance affects bacteria and how bacteria evolve to overcome the effects of the antibiotics, and thus a paradigm for how mycobacteria can evolve in response to stress.
Collapse
Affiliation(s)
- Amel Kevin Alame Emane
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Xujun Guo
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Howard E Takiff
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China; Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, 28 Rue du Dr Roux, Paris, 75015, France; CMBC, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
23
|
Singh P, Jamal S, Ahmed F, Saqib N, Mehra S, Ali W, Roy D, Ehtesham NZ, Hasnain SE. Computational modeling and bioinformatic analyses of functional mutations in drug target genes in Mycobacterium tuberculosis. Comput Struct Biotechnol J 2021; 19:2423-2446. [PMID: 34025934 PMCID: PMC8113780 DOI: 10.1016/j.csbj.2021.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) continues to be the leading cause of deaths due to its persistent drug resistance and the consequent ineffectiveness of anti-TB treatment. Recent years witnessed huge amount of sequencing data, revealing mutations responsible for drug resistance. However, the lack of an up-to-date repository remains a barrier towards utilization of these data and identifying major mutations-associated with resistance. Amongst all mutations, non-synonymous mutations alter the amino acid sequence of a protein and have a much greater effect on pathogenicity. Hence, this type of gene mutation is of prime interest of the present study. The purpose of this study is to develop an updated database comprising almost all reported substitutions within the Mycobacterium tuberculosis (M.tb) drug target genes rpoB, inhA, katG, pncA, gyrA and gyrB. Various bioinformatics prediction tools were used to assess the structural and biophysical impacts of the resistance causing non-synonymous single nucleotide polymorphisms (nsSNPs) at the molecular level. This was followed by evaluating the impact of these mutations on binding affinity of the drugs to target proteins. We have developed a comprehensive online resource named MycoTRAP-DB (Mycobacterium tuberculosis Resistance Associated Polymorphisms Database) that connects mutations in genes with their structural, functional and pathogenic implications on protein. This database is accessible at http://139.59.12.92. This integrated platform would enable comprehensive analysis and prioritization of SNPs for the development of improved diagnostics and antimycobacterial medications. Moreover, our study puts forward secondary mutations that can be important for prognostic assessments of drug-resistance mechanism and actionable anti-TB drugs.
Collapse
Affiliation(s)
- Pooja Singh
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Salma Jamal
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Faraz Ahmed
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Najumu Saqib
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Seema Mehra
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Waseem Ali
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Deodutta Roy
- Department of Environmental and Occupational Health, Florida International University, Miami 33029, USA
| | - Nasreen Z. Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E. Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201301, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110016, India
| |
Collapse
|
24
|
Munir A, Wilson MT, Hardwick SW, Chirgadze DY, Worrall JAR, Blundell TL, Chaplin AK. Using cryo-EM to understand antimycobacterial resistance in the catalase-peroxidase (KatG) from Mycobacterium tuberculosis. Structure 2021; 29:899-912.e4. [PMID: 33444527 PMCID: PMC8355310 DOI: 10.1016/j.str.2020.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Resolution advances in cryoelectron microscopy (cryo-EM) now offer the possibility to visualize structural effects of naturally occurring resistance mutations in proteins and also of understanding the binding mechanisms of small drug molecules. In Mycobacterium tuberculosis the multifunctional heme enzyme KatG is indispensable for activation of isoniazid (INH), a first-line pro-drug for treatment of tuberculosis. We present a cryo-EM methodology for structural and functional characterization of KatG and INH resistance variants. The cryo-EM structure of the 161 kDa KatG dimer in the presence of INH is reported to 2.7 Å resolution allowing the observation of potential INH binding sites. In addition, cryo-EM structures of two INH resistance variants, identified from clinical isolates, W107R and T275P, are reported. In combination with electronic absorbance spectroscopy our cryo-EM approach reveals how these resistance variants cause disorder in the heme environment preventing heme uptake and retention, providing insight into INH resistance. A cryo-EM structure to 2.7 Å resolution of M. tuberculosis KatG with isoniazid Cryo-EM is able to visualize multiple dynamic binding modes of isoniazid to KatG Structural disorder in isoniazid resistance mutations is observed Structural disorder of the resistance mutations results in the lack of heme retention
Collapse
Affiliation(s)
- Asma Munir
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Dimitri Y Chirgadze
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
25
|
Welekidan LN, Skjerve E, Dejene TA, Gebremichael MW, Brynildsrud O, Tønjum T, Yimer SA. Frequency and patterns of first- and second-line drug resistance-conferring mutations in Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in a cross-sectional study in Tigray Region, Ethiopia. J Glob Antimicrob Resist 2020; 24:6-13. [PMID: 33279682 DOI: 10.1016/j.jgar.2020.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Tuberculosis (TB) is a preventable and treatable infectious disease, but the continuing emergence and spread of multidrug-resistant TB is threatening global TB control efforts. This study aimed to describe the frequency and patterns of drug resistance-conferring mutations of Mycobacterium tuberculosis (MTB) isolates detected from pulmonary TB patients in Tigray Region, Ethiopia. METHODS A cross-sectional study design was employed to collect sputum samples from pulmonary TB patients between July 2018 to August 2019. Culture and identification tests were done at Tigray Health Research Institute (THRI). Mutations conferring rifampicin (RIF), isoniazid (INH) and fluoroquinolone (FQ) resistance were determined in 227 MTB isolates using GenoType MTBDRplus and GenoType MTBDRsl. RESULTS Mutations conferring resistance to RIF, INH and FQs were detected in 40/227 (17.6%), 41/227 (18.1%) and 2/38 (5.3%) MTB isolates, respectively. The majority of mutations for RIF, INH and FQs occurred at codons rpoB S531L (70%), katG S315T (78%) and gyrA D94Y/N (100%), respectively. This study revealed a significant number of unknown mutations in the rpoB, katG and inhA genes. CONCLUSION High rates of mutations conferring resistance to RIF, INH and FQs were observed in this study. A large number of isolates showed unknown mutations, which require further DNA sequencing analysis. Periodic drug resistance surveillance and scaling-up of drug resistance testing facilities are imperative to prevent the transmission of drug-resistant TB in the community.
Collapse
Affiliation(s)
- Letemichael Negash Welekidan
- Department of Para Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; Department of Production Animal Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia.
| | - Eystein Skjerve
- Department of Production Animal Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway
| | - Tsehaye Asmelash Dejene
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia
| | | | - Ola Brynildsrud
- Department of Para Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; Department of Bacteriology and Immunology, Norwegian Institute of Public Health, P.O. Box 222, 0213 Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Unit for Genome Dynamics, University of Oslo, P.O. Box 1072, 0316 Oslo, Norway; Department of Microbiology, Unit for Genome Dynamics, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway
| | - Solomon Abebe Yimer
- Department of Microbiology, Unit for Genome Dynamics, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway; Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| |
Collapse
|
26
|
Higher genome mutation rates of Beijing lineage of Mycobacterium tuberculosis during human infection. Sci Rep 2020; 10:17997. [PMID: 33093577 PMCID: PMC7582865 DOI: 10.1038/s41598-020-75028-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) strains of Beijing lineage have caused great concern because of their rapid emergence of drug resistance and worldwide spread. DNA mutation rates that reflect evolutional adaptation to host responses and the appearance of drug resistance have not been elucidated in human-infected Beijing strains. We tracked and obtained an original Mtb isolate of Beijing lineage from the 1999 tuberculosis outbreak in Japan, as well as five other isolates that spread in humans, and two isolates from the patient caused recurrence. Three isolates were from patients who developed TB within one year after infection (rapid-progressor, RP), and the other three isolates were from those who developed TB more than one year after infection (slow-progressor, SP). We sequenced genomes of these isolates and analyzed the propensity and rate of genomic mutations. Generation time versus mutation rate curves were significantly higher for RP. The ratio of oxidative versus non-oxidation damages induced mutations was higher in SP than RP, suggesting that persistent Mtb are exposed to oxidative stress in the latent state. Our data thus demonstrates that higher mutation rates of Mtb Beijing strains during human infection is likely to account for the higher adaptability and an emergence ratio of drug resistance.
Collapse
|
27
|
HIV Coinfection Is Associated with Low-Fitness rpoB Variants in Rifampicin-Resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2020; 64:AAC.00782-20. [PMID: 32718966 PMCID: PMC7508592 DOI: 10.1128/aac.00782-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
We analyzed 312 drug-resistant genomes of Mycobacterium tuberculosis isolates collected from HIV-coinfected and HIV-negative TB patients from nine countries with a high tuberculosis burden. We found that rifampicin-resistant M. tuberculosis strains isolated from HIV-coinfected patients carried disproportionally more resistance-conferring mutations in rpoB that are associated with a low fitness in the absence of the drug, suggesting these low-fitness rpoB variants can thrive in the context of reduced host immunity.
Collapse
|
28
|
Theron G, Limberis J, Venter R, Smith L, Pietersen E, Esmail A, Calligaro G, Te Riele J, de Kock M, van Helden P, Gumbo T, Clark TG, Fennelly K, Warren R, Dheda K. Bacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosis. Nat Med 2020; 26:1435-1443. [PMID: 32601338 PMCID: PMC8353872 DOI: 10.1038/s41591-020-0940-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
A burgeoning epidemic of drug-resistant tuberculosis (TB) threatens to derail global control efforts. Although the mechanisms remain poorly clarified, drug-resistant strains are widely believed to be less infectious than drug-susceptible strains. Consequently, we hypothesized that lower proportions of patients with drug-resistant TB would have culturable Mycobacterium tuberculosis from respirable, cough-generated aerosols compared to patients with drug-susceptible TB, and that multiple factors, including mycobacterial genomic variation, would predict culturable cough aerosol production. We enumerated the colony forming units in aerosols (≤10 µm) from 452 patients with TB (227 with drug resistance), compared clinical characteristics, and performed mycobacterial whole-genome sequencing, dormancy phenotyping and drug-susceptibility analyses on M. tuberculosis from sputum. After considering treatment duration, we found that almost half of the patients with drug-resistant TB were cough aerosol culture-positive. Surprisingly, neither mycobacterial genomic variants, lineage, nor dormancy status predicted cough aerosol culture positivity. However, mycobacterial sputum bacillary load and clinical characteristics, including a lower symptom score and stronger cough, were strongly predictive, thereby supporting targeted transmission-limiting interventions. Effective treatment largely abrogated cough aerosol culture positivity; however, this was not always rapid. These data question current paradigms, inform public health strategies and suggest the need to redirect TB transmission-associated research efforts toward host-pathogen interactions.
Collapse
Affiliation(s)
- Grant Theron
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jason Limberis
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Rouxjeane Venter
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liezel Smith
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elize Pietersen
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Greg Calligaro
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | | | - Marianna de Kock
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor University Medical Center, Dallas, TX, USA
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Kevin Fennelly
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robin Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
29
|
Welekidan LN, Skjerve E, Dejene TA, Gebremichael MW, Brynildsrud O, Agdestein A, Tessema GT, Tønjum T, Yimer SA. Characteristics of pulmonary multidrug-resistant tuberculosis patients in Tigray Region, Ethiopia: A cross-sectional study. PLoS One 2020; 15:e0236362. [PMID: 32797053 PMCID: PMC7428183 DOI: 10.1371/journal.pone.0236362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is among the top 10 causes of mortality and the first killer among infectious diseases worldwide. One of the factors fuelling the TB epidemic is the global rise of multidrug resistant TB (MDR-TB). The aim of this study was to determine the magnitude and factors associated with MDR-TB in the Tigray Region, Ethiopia. METHOD This study employed a facility-based cross-sectional study design, which was conducted between July 2018 and August 2019. The inclusion criteria for the study participants were GeneXpert-positive who were not under treatment for TB, PTB patients' ≥15 years of age and who provided written informed consent. A total of 300 participants were enrolled in the study, with a structured questionnaire used to collect data on clinical, sociodemographic and behavioral factors. Sputum samples were collected and processed for acid-fast bacilli staining, culture and drug susceptibility testing. Drug susceptibility testing was performed using a line probe assay. Logistic regression was used to analyze associations between outcome and predictor variables. RESULTS The overall proportion of MDR-TB was 16.7% (11.6% and 32.7% for new and previously treated patients, respectively). Of the total MDR-TB isolates, 5.3% were pre-XDR-TB. The proportion of MDR-TB/HIV co-infection was 21.1%. A previous history of TB treatment AOR 3.75; 95% CI (0.7-2.24), cigarette smoking AOR 6.09; CI (1.65-2.50) and patients who had an intermittent fever (AOR = 2.54, 95% CI = 1.21-5.4) were strongly associated with MDR-TB development. CONCLUSIONS The magnitude of MDR-TB observed among new and previously treated patients is very alarming, which calls for an urgent need for intervention. The high proportion of MDR-TB among newly diagnosed cases indicates ongoing transmission, which suggests the need for enhanced TB control program performance to interrupt transmission. The increased proportion of MDR-TB among previously treated cases indicates a need for better patient management to prevent the evolution of drug resistance. Assessing the TB control program performance gaps and an optimal implementation of the WHO recommended priority actions for the management of drug-resistant TB, is imperative to help reduce the current high MDR-TB burden in the study region.
Collapse
Affiliation(s)
- Letemichael Negash Welekidan
- Department of Para Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Eystein Skjerve
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Tsehaye Asmelash Dejene
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | | | - Ola Brynildsrud
- Department of Para Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Tone Tønjum
- Department of Microbiology, Unit for Genome Dynamics, University of Oslo, Oslo, Norway
- Department of Microbiology, Unit for Genome Dynamics, Oslo University Hospital, Oslo, Norway
| | - Solomon Abebe Yimer
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Unit for Genome Dynamics, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis in Mongolia. Antimicrob Agents Chemother 2020; 64:AAC.00537-20. [PMID: 32312782 DOI: 10.1128/aac.00537-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/15/2020] [Indexed: 11/20/2022] Open
Abstract
Globally, mutations in the katG gene account for the majority of isoniazid-resistant strains of Mycobacterium tuberculosis Buyankhishig et al. analyzed a limited number of Mycobacterium tuberculosis strains in Mongolia and found that isoniazid resistance was mainly attributable to inhA mutations (B. Buyankhishig, T. Oyuntuya, B. Tserelmaa, J. Sarantuya, et al., Int J Mycobacteriol 1:40-44, 2012, https://doi.org/10.1016/j.ijmyco.2012.01.007). The GenoType MTBDRplus assay was performed for isolates collected in the First National Tuberculosis Prevalence Survey and the Third Anti-Tuberculosis Drug Resistance Survey to investigate genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis in Mongolia. Of the 409 isoniazid-resistant isolates detected by the GenoType MTBDRplus assay, 127 (31.1%) were resistant to rifampin, 294 (71.9%) had inhA mutations without katG mutations, 113 (27.6%) had katG mutations without inhA mutations, and 2 (0.5%) had mutations in both the inhA and katG genes. Of the 115 strains with any katG mutation, 114 (99.1%) had mutations in codon 315 (S315T). Of the 296 strains with any inhA mutation, 290 (98.0%) had a C15T mutation. The proportions of isoniazid-resistant strains with katG mutations were 25.3% among new cases and 36.2% among retreatment cases (P = 0.03) and 17.0% among rifampin-susceptible strains and 52.8% among rifampin-resistant strains (P < 0.01). Rifampin resistance was significantly associated with the katG mutation (adjusted odds ratio, 5.36; 95% confidence interval [CI], 3.3 to 8.67, P < 0.001). Mutations in inhA predominated in isoniazid-resistant tuberculosis in Mongolia. However, the proportion of katG mutations in isolates from previously treated cases was higher than in those from new cases, and the proportion in cases with rifampin resistance was higher than in cases without rifampin resistance.
Collapse
|
31
|
Sobkowiak B, Banda L, Mzembe T, Crampin AC, Glynn JR, Clark TG. Bayesian reconstruction of Mycobacterium tuberculosis transmission networks in a high incidence area over two decades in Malawi reveals associated risk factors and genomic variants. Microb Genom 2020; 6:e000361. [PMID: 32234123 PMCID: PMC7276699 DOI: 10.1099/mgen.0.000361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/12/2020] [Indexed: 11/21/2022] Open
Abstract
Understanding host and pathogen factors that influence tuberculosis (TB) transmission can inform strategies to eliminate the spread of Mycobacterium tuberculosis (Mtb). Determining transmission links between cases of TB is complicated by a long and variable latency period and undiagnosed cases, although methods are improving through the application of probabilistic modelling and whole-genome sequence analysis. Using a large dataset of 1857 whole-genome sequences and comprehensive metadata from Karonga District, Malawi, over 19 years, we reconstructed Mtb transmission networks using a two-step Bayesian approach that identified likely infector and recipient cases, whilst robustly allowing for incomplete case sampling. We investigated demographic and pathogen genomic variation associated with transmission and clustering in our networks. We found that whilst there was a significant decrease in the proportion of infectors over time, we found higher transmissibility and large transmission clusters for lineage 2 (Beijing) strains. By performing evolutionary convergence testing (phyC) and genome-wide association analysis (GWAS) on transmitting versus non-transmitting cases, we identified six loci, PPE54, accD2, PE_PGRS62, rplI, Rv3751 and Rv2077c, that were associated with transmission. This study provides a framework for reconstructing large-scale Mtb transmission networks. We have highlighted potential host and pathogen characteristics that were linked to increased transmission in a high-burden setting and identified genomic variants that, with validation, could inform further studies into transmissibility and TB eradication.
Collapse
Affiliation(s)
- Benjamin Sobkowiak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Present address: Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada, and British Columbia Centre for Disease Control, Vancouver, Canada
| | - Louis Banda
- Malawi Epidemiology and Intervention Research Unit, Malawi
| | - Themba Mzembe
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Amelia C. Crampin
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Judith R. Glynn
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
32
|
AlMatar M, Var I, Kayar B, Köksal F. Differential Expression of Resistant and Efflux Pump Genes in MDR-TB Isolates. Endocr Metab Immune Disord Drug Targets 2020; 20:271-287. [DOI: 10.2174/1871530319666191009153834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/21/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022]
Abstract
Background:Numerous investigations demonstrate efflux as a worldwide bacterial mode of action which contributes to the resistance of drugs. The activity of antibiotics, which subjects to efflux, can be improved by the combined usage of efflux inhibitors. However, the efflux role to the overall levels of antibiotic resistance of clinical M. tuberculosis isolates is inadequately comprehended and is still disregarded by many.Method:Here, we assessed the contribution of resistant genes associated with isoniazid (INH) and rifampin (R) resistance to the levels of drug resistance in the (27) clinical isolates of MDR-TB. Additionally, the role of the resistance for six putative drug efflux pump genes to the antibiotics was investigated. The level of katG expression was down-regulated in 24/27 (88.88%) of MDR-TB isolates. Of the 27 MDR-TB isolates, inhA, oxyR-ahpC, and rpoB showed either overexpression or up-regulation in 8 (29.62%), 4 (14.81 %), and 24 (88.88%), respectively. Moreover, the efflux pump genes drrA, drrB, efpA, Rv2459, Rv1634, and Rv1250 were overexpressed under INH/RIF plus fresh pomegranate juice (FPJ) stress signifying the efflux pumps contribution to the overall levels of the resistance of MDR-TB isolates.Conclusion:These results displayed that the levels of drug resistance of MDR-TB clinical isolates are due to combination among drug efflux pump and the presence of mutations in target genes, a truth which is often ignored by the specialists of tuberculosis in favour of the almost undoubted significance of drug target- gene mutations for the resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu), Cukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
33
|
Whole genome sequencing, analyses of drug resistance-conferring mutations, and correlation with transmission of Mycobacterium tuberculosis carrying katG-S315T in Hanoi, Vietnam. Sci Rep 2019; 9:15354. [PMID: 31653940 PMCID: PMC6814805 DOI: 10.1038/s41598-019-51812-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is a serious global problem, and pathogen factors involved in the transmission of isoniazid (INH)-resistant TB have not been fully investigated. We performed whole genome sequencing of 332 clinical Mycobacterium tuberculosis (Mtb) isolates collected from patients newly diagnosed with smear-positive pulmonary TB in Hanoi, Vietnam. Using a bacterial genome-wide approach based on linear mixed models, we investigated the associations between 31-bp k-mers and clustered strains harboring katG-S315T, a major INH-resistance mutation in the present cohort and in the second panel previously published in South Africa. Five statistically significant genes, namely, PPE18/19, gid, emrB, Rv1588c, and pncA, were shared by the two panels. We further identified variants of the genes responsible for these k-mers, which are relevant to the spread of INH-resistant strains. Phylogenetic convergence test showed that variants relevant to PPE46/47-like chimeric genes were significantly associated with the same phenotype in Hanoi. The associations were further confirmed after adjustment for the confounders. These findings suggest that genomic variations of the pathogen facilitate the expansion of INH-resistance TB, at least in part, and our study provides a new insight into the mechanisms by which drug-resistant Mtb maintains fitness and spreads in Asia and Africa.
Collapse
|
34
|
Becerra MC, Huang CC, Lecca L, Bayona J, Contreras C, Calderon R, Yataco R, Galea J, Zhang Z, Atwood S, Cohen T, Mitnick CD, Farmer P, Murray M. Transmissibility and potential for disease progression of drug resistant Mycobacterium tuberculosis: prospective cohort study. BMJ 2019; 367:l5894. [PMID: 31649017 PMCID: PMC6812583 DOI: 10.1136/bmj.l5894] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To measure the association between phenotypic drug resistance and the risk of tuberculosis infection and disease among household contacts of patients with pulmonary tuberculosis. SETTING 106 district health centers in Lima, Peru between September 2009 and September 2012. DESIGN Prospective cohort study. PARTICIPANTS 10 160 household contacts of 3339 index patients with tuberculosis were classified on the basis of the drug resistance profile of the patient: 6189 were exposed to drug susceptible strains of Mycobacterium tuberculosis, 1659 to strains resistant to isoniazid or rifampicin, and 1541 to strains that were multidrug resistant (resistant to isoniazid and rifampicin). MAIN OUTCOME MEASURES Tuberculosis infection (positive tuberculin skin test) and the incidence of active disease (diagnosed by positive sputum smear or chest radiograph) after 12 months of follow-up. RESULTS Household contacts exposed to patients with multidrug resistant tuberculosis had an 8% (95% confidence interval 4% to 13%) higher risk of infection by the end of follow-up compared with household contacts of patients with drug sensitive tuberculosis. The relative hazard of incident tuberculosis disease did not differ among household contacts exposed to multidrug resistant tuberculosis and those exposed to drug sensitive tuberculosis (adjusted hazard ratio 1.28, 95% confidence interval 0.9 to 1.83). CONCLUSION Household contacts of patients with multidrug resistant tuberculosis were at higher risk of tuberculosis infection than contacts exposed to drug sensitive tuberculosis. The risk of developing tuberculosis disease did not differ among contacts in both groups. The evidence invites guideline producers to take action by targeting drug resistant and drug sensitive tuberculosis, such as early detection and effective treatment of infection and disease. TRIAL REGISTRATION ClinicalTrials.gov NCT00676754.
Collapse
Affiliation(s)
- Mercedes C Becerra
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA
| | - Chuan-Chin Huang
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | - Jerome Galea
- School of Social Work, College of Behavioral and Community Sciences, University of South Florida, Tampa, FL, USA
| | - Zibiao Zhang
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sidney Atwood
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Carole D Mitnick
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA
| | - Paul Farmer
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
35
|
Song WM, Shao Y, Liu JY, Tao NN, Liu Y, Zhang QY, Xu TT, Li SJ, Yu CB, Gao L, Cui LL, Li YF, Li HC. Primary drug resistance among tuberculosis patients with diabetes mellitus: a retrospective study among 7223 cases in China. Infect Drug Resist 2019; 12:2397-2407. [PMID: 31447568 PMCID: PMC6684854 DOI: 10.2147/idr.s217044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Given the high burden of tuberculosis (TB) and diabetes mellitus (DM) in China and the worse outcome of TB-DM cases (refers to TB patients with diabetes), and drug-resistant tuberculosis cases (DR-TB), it is of great significance to explore the association between diabetes and primary DR-TB for TB elimination target in China. We assessed the clinical characteristics, drug-resistance profile, and increased risk of resistance among TB-DM patients across China from 2004 to 2017. Method 7223 cases with drug-susceptibility data were collected from Shandong, China. Categorical baseline characteristics of new TB cases were compared by DM status using Fisher's exact or Pearson Chi-square test. Univariable analysis and multivariable logistic models were used to estimate the association between diabetes and different drug-resistance profiles and the risk factors of primary drug resistance among TB-DM cases. Result Of 7223 newly diagnosed TB patients, 426 (5.90%) were TB-DM cases. TB-DM csaes were more likely to be older,accompanied by higher body mass index (BMI) and hypertension than TB-no DM cases (refers to TB patients without diabetes). The rates of DR-TB (21.83% vs 16.96%), polydrug resistant TB (PDR-TB, 6.10% vs 3.80%), isoniazid (INH)+streptomycin (SM)-resistant TB (4.93% vs 3.13%), and SM-resistant TB (16.20% vs 11.7%) among TB-DM group were higher than TB-no DM group, P<0.05. DM was significantly associated with any DR-TB (adjusted (aOR):1.30; 95% CI, 1.02-1.65), SM-related resistance (aOR: 1.43; 95% CI, 1.08-1.88), PDR-TB (OR: 1.57; 95% CI, 1.04-2.36; aOR: 1.59; 95% CI, 1.04-2.44), compared with pan-susceptible TB patients (P<0.05). Conclusion Our study indicated that TB-DM groups had a higher proportion of drug resistance than TB groups, and diabetes was identified as a risk factor of total DR, PDR, SM resistance and INH+SM resistance among newly diagnosed TB cases. Good management of diabetes and TB infection screening program among DM patients might be necessary for improving TB control in China.
Collapse
Affiliation(s)
- Wan-Mei Song
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, People's Republic of China.,Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Yang Shao
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, People's Republic of China
| | - Jin-Yue Liu
- Department of Clinical Medicine, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, People's Republic of China
| | - Ning-Ning Tao
- Department of Clinical Medicine, Medical College, Graduate School of Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yao Liu
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, People's Republic of China
| | - Qian-Yun Zhang
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, People's Republic of China.,Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Ting-Ting Xu
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, People's Republic of China
| | - Shi-Jin Li
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, People's Republic of China.,Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chun-Bao Yu
- Department of Respiratory Medicine, Shandong Provincial Chest Hospital, Jinan 250013, Shandong, People's Republic of China
| | - Lei Gao
- National Health Commssion Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Liang-Liang Cui
- Department of Environmental Health, Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, Shandong, People's Republic of China.,Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Yi-Fan Li
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, People's Republic of China
| | - Huai-Chen Li
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, People's Republic of China.,Department of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, People's Republic of China
| |
Collapse
|
36
|
Mendis C, Thevanesam V, Kumara A, Wickramasinghe S, Madegedara D, Gamage C, Gordon SV, Suzuki Y, Ratnatunga C, Nakajima C. Insight into genetic diversity of Mycobacterium tuberculosis in Kandy, Sri Lanka reveals predominance of the Euro-American lineage. Int J Infect Dis 2019; 87:84-91. [PMID: 31299365 DOI: 10.1016/j.ijid.2019.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Sri Lanka is a country where the molecular epidemiology of Mycobacterium tuberculosis (MTB) is poorly explored. Therefore, this study was performed to identify circulating lineages/sub-lineages of MTB and their transmission patterns. METHODS DNA was extracted from 89 isolates of MTB collected during 2012 and 2013 from new pulmonary tuberculosis patients in Kandy, Sri Lanka and analyzed by spoligotyping, large sequence polymorphism (LSP), mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing, and drug resistance-associated gene sequencing. RESULTS The predominant lineage was lineage 4 (Euro-American, 45.9%), followed by lineage 1 (Indo-Oceanic, 29.4%), lineage 2 (East-Asian, 23.5%), and lineage 3 (Central-Asian, 1.2%). Among 26 spoligotype patterns, eight were undesignated or new types and seven of these belonged to lineage 4. Undesignated lineage 4/SIT124 (n=2/8) and SIT3234 (n=8/8) clustered together based on 24-locus MIRU-VNTR typing. The dominant sub-lineage was Beijing/SIT1 (n=19), with the isoniazid resistance katG G944C mutation (Ser315Thr) detected in two of them. CONCLUSIONS The population structure of MTB in Kandy, Sri Lanka was different from that in the South Asian region. The clonal expansion of locally evolved lineage 4/SIT3234 and detection of the pre-multidrug resistant Beijing isolates from new tuberculosis patients is alarming and will require continuous monitoring.
Collapse
Affiliation(s)
- Charitha Mendis
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Sri Lanka
| | - Vasanthi Thevanesam
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Athula Kumara
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Susiji Wickramasinghe
- Department of Parasitology, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | | | - Chandika Gamage
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; Global Station for Zoonosis Control, Hokkaido University Global Institute for Collaborative Research and Education, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Global Station for Zoonosis Control, Hokkaido University Global Institute for Collaborative Research and Education, Sapporo, Japan
| | - Champa Ratnatunga
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Sri Lanka.
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Global Station for Zoonosis Control, Hokkaido University Global Institute for Collaborative Research and Education, Sapporo, Japan.
| |
Collapse
|
37
|
Payne JL, Menardo F, Trauner A, Borrell S, Gygli SM, Loiseau C, Gagneux S, Hall AR. Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis. PLoS Biol 2019; 17:e3000265. [PMID: 31083647 PMCID: PMC6532934 DOI: 10.1371/journal.pbio.3000265] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/23/2019] [Accepted: 04/26/2019] [Indexed: 11/21/2022] Open
Abstract
Transition bias, an overabundance of transitions relative to transversions, has been widely reported among studies of the rates and spectra of spontaneous mutations. However, demonstrating the role of transition bias in adaptive evolution remains challenging. In particular, it is unclear whether such biases direct the evolution of bacterial pathogens adapting to treatment. We addressed this challenge by analyzing adaptive antibiotic-resistance mutations in the major human pathogen Mycobacterium tuberculosis (MTB). We found strong evidence for transition bias in two independently curated data sets comprising 152 and 208 antibiotic-resistance mutations. This was true at the level of mutational paths (distinct adaptive DNA sequence changes) and events (individual instances of the adaptive DNA sequence changes) and across different genes and gene promoters conferring resistance to a diversity of antibiotics. It was also true for mutations that do not code for amino acid changes (in gene promoters and the 16S ribosomal RNA gene rrs) and for mutations that are synonymous to each other and are therefore likely to have similar fitness effects, suggesting that transition bias can be caused by a bias in mutation supply. These results point to a central role for transition bias in determining which mutations drive adaptive antibiotic resistance evolution in a key pathogen. Some types of mutations occur more frequently than expected. This study shows that such bias —an excess of transitions over transversions—influences the evolution of antibiotic resistance in a key global pathogen, Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Joshua L. Payne
- Institute of Integrative Biology, ETH Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| | - Fabrizio Menardo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastian M. Gygli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Chloe Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alex R. Hall
- Institute of Integrative Biology, ETH Zurich, Switzerland
| |
Collapse
|
38
|
Khan PY, Yates TA, Osman M, Warren RM, van der Heijden Y, Padayatchi N, Nardell EA, Moore D, Mathema B, Gandhi N, Eldholm V, Dheda K, Hesseling AC, Mizrahi V, Rustomjee R, Pym A. Transmission of drug-resistant tuberculosis in HIV-endemic settings. THE LANCET. INFECTIOUS DISEASES 2019; 19:e77-e88. [PMID: 30554996 PMCID: PMC6474238 DOI: 10.1016/s1473-3099(18)30537-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
The emergence and expansion of the multidrug-resistant tuberculosis epidemic is a threat to the global control of tuberculosis. Multidrug-resistant tuberculosis is the result of the selection of resistance-conferring mutations during inadequate antituberculosis treatment. However, HIV has a profound effect on the natural history of tuberculosis, manifesting in an increased rate of disease progression, leading to increased transmission and amplification of multidrug-resistant tuberculosis. Interventions specific to HIV-endemic areas are urgently needed to block tuberculosis transmission. These interventions should include a combination of rapid molecular diagnostics and improved chemotherapy to shorten the duration of infectiousness, implementation of infection control measures, and active screening of multidrug-resistant tuberculosis contacts, with prophylactic regimens for individuals without evidence of disease. Development and improvement of the efficacy of interventions will require a greater understanding of the factors affecting the transmission of multidrug-resistant tuberculosis in HIV-endemic settings, including population-based molecular epidemiology studies. In this Series article, we review what we know about the transmission of multidrug-resistant tuberculosis in settings with high burdens of HIV and define the research priorities required to develop more effective interventions, to diminish ongoing transmission and the amplification of drug resistance.
Collapse
Affiliation(s)
- Palwasha Y Khan
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; TB Centre, London School of Hygiene & Tropical Medicine, London, UK; Interactive Research and Development, Karachi, Pakistan
| | - Tom A Yates
- Institute for Global Health, University College London, London, UK; Institute of Child Health, University College London, London, UK
| | - Muhammad Osman
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Robin M Warren
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Yuri van der Heijden
- Vanderbilt Tuberculosis Center and Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nesri Padayatchi
- South African Medical Research Council HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Edward A Nardell
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA
| | - David Moore
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Neel Gandhi
- Rollins School of Public Health and Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Vegard Eldholm
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Valerie Mizrahi
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roxana Rustomjee
- Division of AIDS, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Pym
- Department of Infection and Immunity, University College London, London, UK; Africa Health Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa.
| |
Collapse
|
39
|
Al-Mutairi NM, Ahmad S, Mokaddas E, Eldeen HS, Joseph S. Occurrence of disputed rpoB mutations among Mycobacterium tuberculosis isolates phenotypically susceptible to rifampicin in a country with a low incidence of multidrug-resistant tuberculosis. BMC Infect Dis 2019; 19:3. [PMID: 30606116 PMCID: PMC6318973 DOI: 10.1186/s12879-018-3638-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
Background Accurate drug susceptibility testing (DST) of Mycobacterium tuberculosis in clinical specimens and culture isolates to first-line drugs is crucial for diagnosis and management of multidrug-resistant tuberculosis (MDR-TB). Resistance of M. tuberculosis to rifampicin is mainly due to mutations in hot-spot region of rpoB gene (HSR-rpoB). The prevalence of disputed (generally missed by rapid phenotypic DST methods) rpoB mutations, which mainly include L511P, D516Y, H526N, H526L, H526S, and L533P in HSR-rpoB and I572F in cluster II region of rpoB gene, is largely unknown. This study determined the occurrence of all disputed mutations in HSR-rpoB and at rpoB codon 572 in M. tuberculosis strains phenotypically susceptible to rifampicin in Kuwait. Methods A total of 242 M. tuberculosis isolates phenotypically susceptible to rifampicin were used. The DST against first-line drugs was performed by Mycobacteria growth indicator tube (MGIT) 960 system. Mutations in HSR-rpoB (and katG codon 315 and inhA-regulatory region for isoniazid resistance) were detected by GenoType MDBDRplus assay. The I572F mutation in cluster II region of rpoB was detected by developing a multiplex allele-specific (MAS)-PCR assay. Results were confirmed by PCR-sequencing of respective loci. Molecular detection of resistance for ethambutol and pyrazinamide and fingerprinting by spoligotyping were also performed for isolates with an rpoB mutation. Results Among 242 rifampicin-susceptible isolates, 0 of 130 pansusceptible/monodrug-resistant isolates but 4 of 112 polydrug-resistant isolates contained a disputed rpoB mutation. All 4 isolates were also resistant to isoniazid and molecular screening identified additional resistance to pyrazinamide and ethambutol in one isolate each. In final analysis, 2 of 4 isolates were resistant to all 4 first-line drugs. Spoligotyping showed that the isolates belonged to different M. tuberculosis lineages. Conclusions Four of 242 (1.7%) rifampicin-susceptible M. tuberculosis isolates contained a disputed rpoB mutation including 2 isolates resistant to all four first-line drugs. The occurrence of a disputed rpoB mutation in polydrug-resistant M. tuberculosis isolates resistant at least to isoniazid (MDR-TB) suggests that polydrug-resistant strains should be checked for genotypic rifampicin resistance for optimal patient management since the failure/relapse rates are nearly same in isolates with a canonical or disputed rpoB mutation.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.,Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| | | | - Susan Joseph
- Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| |
Collapse
|
40
|
Nguyen QH, Contamin L, Nguyen TVA, Bañuls A. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol Appl 2018; 11:1498-1511. [PMID: 30344622 PMCID: PMC6183457 DOI: 10.1111/eva.12654] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 01/01/2023] Open
Abstract
At present, the successful transmission of drug-resistant Mycobacterium tuberculosis, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, in human populations, threatens tuberculosis control worldwide. Differently from many other bacteria, M. tuberculosis drug resistance is acquired mainly through mutations in specific drug resistance-associated genes. The panel of mutations is highly diverse, but depends on the affected gene and M. tuberculosis genetic background. The variety of genetic profiles observed in drug-resistant clinical isolates underlines different evolutionary trajectories towards multiple drug resistance, although some mutation patterns are prominent. This review discusses the intrinsic processes that may influence drug resistance evolution in M. tuberculosis, such as mutation rate, drug resistance-associated mutations, fitness cost, compensatory mutations and epistasis. This knowledge should help to better predict the risk of emergence of highly resistant M. tuberculosis strains and to develop new tools and strategies to limit the development and spread of MDR and XDR strains.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- Department of Pharmacological, Medical and Agronomical BiotechnologyUniversity of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Lucie Contamin
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Thi Van Anh Nguyen
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Anne‐Laure Bañuls
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| |
Collapse
|
41
|
Lee JH, Jo KW, Shim TS. Correlation between GenoType MTBDR plus Assay and Phenotypic Susceptibility Test for Prothionamide in Patients with Genotypic Isoniazid Resistance. Tuberc Respir Dis (Seoul) 2018; 82:143-150. [PMID: 30302956 PMCID: PMC6435929 DOI: 10.4046/trd.2018.0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/28/2018] [Accepted: 06/25/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The purpose of this study was to analyze the relationship between the gene mutation patterns by the GenoType MTBDRplus (MTBDRplus) assay and the phenotypic drug susceptibility test (pDST) results of isoniazid (INH) and prothionamide (Pto). METHODS A total of 206 patients whose MTBDRplus assay results revealed katG or inhA mutations were enrolled in the study. The pDST results were compared to mutation patterns on the MTBDRplus assay. RESULTS The katG and inhA mutations were identified in 68.0% and 35.0% of patients, respectively. Among the 134 isolated katG mutations, three (2.2%), 127 (94.8%) and 11 (8.2%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Among the 66 isolated inhA mutations, 34 (51.5%), 18 (27.3%) and 21 (31.8%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Of the 34 phenotypic Pto resistant isolates, 21 (61.8%), 11 (32.4%), and two (5.9%) had inhA, katG, and both gene mutations. CONCLUSION It is noted that Pto may still be selected as one of the appropriate multidrug-resistant tuberculosis regimen, although inhA mutation is detected by the MTBDRplus assay until pDST confirms a Pto resistance. The reporting of detailed mutation patterns of the MTBDRplus assay may be important for clinical practice, rather than simply presenting resistance or susceptibility test results.
Collapse
Affiliation(s)
- Joo Hee Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Wook Jo
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Sun Shim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
42
|
Dormant Mycobacterium tuberculosis converts isoniazid to the active drug in a Wayne’s model of dormancy. J Antibiot (Tokyo) 2018; 71:939-949. [DOI: 10.1038/s41429-018-0098-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
43
|
Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar. Int J Infect Dis 2018; 76:109-119. [PMID: 29936318 DOI: 10.1016/j.ijid.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Myanmar is a World Health Organization high tuberculosis (TB) burden country with a high multidrug-resistant (MDR)-TB burden. Of significance, a high prevalence of the Beijing genotype of Mycobacterium tuberculosis (MTB) among MDR-MTB has been reported previously. A detailed genetic characterization of TB clinical isolates was performed in order to explore whether there is an association between the prevalence of the Beijing MTB genotype and MDR-TB in Myanmar. METHODS A total of 265 MDR-MTB clinical isolates collected in 2010 and 2012 were subjected to spoligotyping, mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) analysis, single nucleotide polymorphism (SNP) typing, and drug resistance-associated gene sequencing, including rpoC to detect potential compensatory evolution. RESULTS Of the total MDR-MTB isolates, 79.2% (210/265) were of the Beijing genotype, the majority of which were the 'modern' subtype. Beijing genotype isolates were differentiated by 15-locus MIRU-VNTR and a high clustering rate (53.0%) was observed in the modern subtype. These MIRU-VNTR patterns were similar to Beijing genotype clones spreading across Russia and Central Asia. A high prevalence of katG Ser315Thr, and genetic evidence of extensive drug resistance (XDR) and pre-XDR and compensatory mutations in rpoC were observed among clustered isolates. CONCLUSIONS MDR-MTB strains of the Beijing genotype might be spreading in Myanmar and present a major challenge to TB control in this country.
Collapse
|
44
|
Nieto R LM, Mehaffy C, Islam MN, Fitzgerald B, Belisle J, Prenni J, Dobos K. Biochemical Characterization of Isoniazid-resistant Mycobacterium tuberculosis: Can the Analysis of Clonal Strains Reveal Novel Targetable Pathways? Mol Cell Proteomics 2018; 17:1685-1701. [PMID: 29844232 DOI: 10.1074/mcp.ra118.000821] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 01/01/2023] Open
Abstract
Tuberculosis (TB) continues to be an important public health threat worldwide, due in part to drug resistant Mycobacterium tuberculosis (Mtb) strains. The United States recently reported a shortage of isoniazid (INH), which could drive higher INH resistance rates. Changes in the Mtb proteome before and after acquisition of INH resistance in a clean genetic background remain understudied and may elucidate alternate drug targets. Here, we focused on Mtb clonal strains to characterize the consequences of INH resistance on mycobacterial metabolism. Proteomic analysis was conducted by liquid-chromatography tandem mass spectrometry (LC-MS/MS) of cellular and secreted fractions, followed by a normalized spectral counting (NSAF) analysis (data are available via ProteomeXchange with identifier PXD009549). Two different Mtb clonal pairs representing a specific genetic lineage (one clinical and one generated in the laboratory) but sharing a katG mutation associated with INH resistance, were used in our analysis. Overall, we found 26 Mtb proteins with altered abundances after acquisition of INH resistance across both Mtb genetic lineages studied. These proteins were involved in ATP synthesis, lipid metabolism, regulatory events, and virulence, detoxification, and adaptation processes. Proteomic findings were validated by Western blotting analyses whenever possible. Mycolic acid (MA) analysis through LC/MS in the clonal Mtb pairs did not reveal a common trend in the alteration of these fatty acids across both INHr strains but revealed a significant reduction in levels of the two more abundant α-MA features in the clinical INHr strain. Interestingly, the clinical clonal pair demonstrated more variation in the abundance of the proteins involved in the FAS II pathway. Together, the proteomic and lipidomic data highlight the identification of potential drug targets such as alternative lipid biosynthetic pathways that may be exploited to combat clinically relevant Mtb INHr strains.
Collapse
Affiliation(s)
| | | | - M Nurul Islam
- From the ‡Department of Microbiology, Immunology and Pathology
| | | | - John Belisle
- From the ‡Department of Microbiology, Immunology and Pathology
| | - Jessica Prenni
- §Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO
| | - Karen Dobos
- From the ‡Department of Microbiology, Immunology and Pathology,
| |
Collapse
|
45
|
Fitness-compensatory mutations facilitate the spread of drug-resistant F15/LAM4/KZN and F28 Mycobacterium tuberculosis strains in KwaZulu-Natal, South Africa. J Genet 2018; 96:599-612. [PMID: 28947708 DOI: 10.1007/s12041-017-0805-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While the acquisition of drug resistance is often accompanied by fitness costs, Mycobacterium tuberculosis has developed mechanisms to overcome these costs in the form of compensatory mutations. In an attempt to dissect strain-specific differences in biological fitness, 10 M. tuberculosis genomes, representing F15/LAM4/KZN, Beijing, F11 and F28 genotypes were sequenced on the Illumina MiSeq platform. Drug-susceptible F15/LAM4/KZN strains differed by 43 SNPs, demonstrating that heterogeneity exists even among closely-related strains. We found unique, nonsynonymous single-nucleotide polymorphisms (SNPs) in the sigA and grcC1 genes of multidrug resistant (MDR) and XDR F15/LAM4/KZN strains, respectively. The F28 MDR strain harboured a novel ubiA mutation in combination with its embB M306I mutation, which may be related to ethambutol resistance. In addition, it possessed a low-frequency rpoC mutation, suggesting that this strain was in the process of developing compensation. In contrast, no compensatory mutations were identified in Beijing and F11 MDR strains, corroborating its low in vitro fitness. Clinical strains also harboured unique SNPs in a number of important genes associated with virulence, highlighting the need for future studies which examine the correlation of genetic variations with phenotypic diversity. In summary, whole-genome sequencing revealed the presence of fitness-compensatory mutations in F15/LAM4/KZN and F28 genotypes which predominate in MDR and/or extensively drug resistant (XDR) forms in KwaZulu-Natal, South Africa.
Collapse
|
46
|
Carey AF, Rock JM, Krieger IV, Chase MR, Fernandez-Suarez M, Gagneux S, Sacchettini JC, Ioerger TR, Fortune SM. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog 2018; 14:e1006939. [PMID: 29505613 PMCID: PMC5854444 DOI: 10.1371/journal.ppat.1006939] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/15/2018] [Accepted: 02/13/2018] [Indexed: 01/25/2023] Open
Abstract
Once considered a phenotypically monomorphic bacterium, there is a growing body of work demonstrating heterogeneity among Mycobacterium tuberculosis (Mtb) strains in clinically relevant characteristics, including virulence and response to antibiotics. However, the genetic and molecular basis for most phenotypic differences among Mtb strains remains unknown. To investigate the basis of strain variation in Mtb, we performed genome-wide transposon mutagenesis coupled with next-generation sequencing (TnSeq) for a panel of Mtb clinical isolates and the reference strain H37Rv to compare genetic requirements for in vitro growth across these strains. We developed an analytic approach to identify quantitative differences in genetic requirements between these genetically diverse strains, which vary in genomic structure and gene content. Using this methodology, we found differences between strains in their requirements for genes involved in fundamental cellular processes, including redox homeostasis and central carbon metabolism. Among the genes with differential requirements were katG, which encodes the activator of the first-line antitubercular agent isoniazid, and glcB, which encodes malate synthase, the target of a novel small-molecule inhibitor. Differences among strains in their requirement for katG and glcB predicted differences in their response to these antimicrobial agents. Importantly, these strain-specific differences in antibiotic response could not be predicted by genetic variants identified through whole genome sequencing or by gene expression analysis. Our results provide novel insight into the basis of variation among Mtb strains and demonstrate that TnSeq is a scalable method to predict clinically important phenotypic differences among Mtb strains.
Collapse
Affiliation(s)
- Allison F. Carey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeremy M. Rock
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Michael R. Chase
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marta Fernandez-Suarez
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (SMF); (TRI)
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (SMF); (TRI)
| |
Collapse
|
47
|
Machado D, Perdigão J, Portugal I, Pieroni M, Silva PA, Couto I, Viveiros M. Efflux Activity Differentially Modulates the Levels of Isoniazid and Rifampicin Resistance among Multidrug Resistant and Monoresistant Mycobacterium tuberculosis Strains. Antibiotics (Basel) 2018; 7:antibiotics7010018. [PMID: 29510519 PMCID: PMC5872129 DOI: 10.3390/antibiotics7010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/01/2023] Open
Abstract
With the growing body of knowledge on the contribution of efflux activity to Mycobacterium tuberculosis drug resistance, increased attention has been given to the use of efflux inhibitors as adjuvants of tuberculosis therapy. Here, we investigated how efflux activity modulates the levels of efflux between monoresistant and multi- and extensively drug resistant (M/XDR) M. tuberculosis clinical isolates. The strains were characterized by antibiotic susceptibility testing in the presence/absence of efflux inhibitors, molecular typing, and genetic analysis of drug-resistance-associated genes. Efflux activity was quantified by real-time fluorometry. The results demonstrated that all the M. tuberculosis clinical strains, susceptible or resistant, presented a faster, rapid, and non-specific efflux-mediated short-term response to drugs. The synergism assays demonstrated that the efflux inhibitors were more effective in reducing the resistance levels in the M/XDR strains than in the monoresistant strains. This indicated that M/XDR strains presented a more prolonged response to drugs mediated by efflux compared to the monoresistant strains, but both maintain it as a long-term stress response. This work shows that efflux activity modulates the levels of drug resistance between monoresistant and M/XDR M. tuberculosis clinical strains, allowing the bacteria to survive in the presence of noxious compounds.
Collapse
Affiliation(s)
- Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa 1349-008, Portugal.
| | - João Perdigão
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| | - Isabel Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| | - Marco Pieroni
- P4T Group, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy.
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Porto Alegre 96200-190, Brazil.
| | - Pedro A Silva
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy.
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa 1349-008, Portugal.
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa 1349-008, Portugal.
| |
Collapse
|
48
|
Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev 2018; 41:354-373. [PMID: 28369307 DOI: 10.1093/femsre/fux011] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/17/2017] [Indexed: 11/12/2022] Open
Abstract
Antibiotic-resistant Mycobacterium tuberculosis strains are threatening progress in containing the global tuberculosis epidemic. Mycobacterium tuberculosis is intrinsically resistant to many antibiotics, limiting the number of compounds available for treatment. This intrinsic resistance is due to a number of mechanisms including a thick, waxy, hydrophobic cell envelope and the presence of drug degrading and modifying enzymes. Resistance to the drugs which are active against M. tuberculosis is, in the absence of horizontally transferred resistance determinants, conferred by chromosomal mutations. These chromosomal mutations may confer drug resistance via modification or overexpression of the drug target, as well as by prevention of prodrug activation. Drug resistance mutations may have pleiotropic effects leading to a reduction in the bacterium's fitness, quantifiable e.g. by a reduction in the in vitro growth rate. Secondary so-called compensatory mutations, not involved in conferring resistance, can ameliorate the fitness cost by interacting epistatically with the resistance mutation. Although the genetic diversity of M. tuberculosis is low compared to other pathogenic bacteria, the strain genetic background has been demonstrated to influence multiple aspects in the evolution of drug resistance. The rate of resistance evolution and the fitness costs of drug resistance mutations may vary as a function of the genetic background.
Collapse
Affiliation(s)
- Sebastian M Gygli
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Mortimer TD, Weber AM, Pepperell CS. Signatures of Selection at Drug Resistance Loci in Mycobacterium tuberculosis. mSystems 2018; 3:e00108-17. [PMID: 29404424 PMCID: PMC5790871 DOI: 10.1128/msystems.00108-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death by an infectious disease, and global TB control efforts are increasingly threatened by drug resistance in Mycobacterium tuberculosis. Unlike most bacteria, where lateral gene transfer is an important mechanism of resistance acquisition, resistant M. tuberculosis arises solely by de novo chromosomal mutation. Using whole-genome sequencing data from two natural populations of M. tuberculosis, we characterized the population genetics of known drug resistance loci using measures of diversity, population differentiation, and convergent evolution. We found resistant subpopulations to be less diverse than susceptible subpopulations, consistent with ongoing transmission of resistant M. tuberculosis. A subset of resistance genes ("sloppy targets") were characterized by high diversity and multiple rare variants; we posit that a large genetic target for resistance and relaxation of purifying selection contribute to high diversity at these loci. For "tight targets" of selection, the path to resistance appeared narrower, evidenced by single favored mutations that arose numerous times in the phylogeny and segregated at markedly different frequencies in resistant and susceptible subpopulations. These results suggest that diverse genetic architectures underlie drug resistance in M. tuberculosis and that combined approaches are needed to identify causal mutations. Extrapolating from patterns observed for well-characterized genes, we identified novel candidate variants involved in resistance. The approach outlined here can be extended to identify resistance variants for new drugs, to investigate the genetic architecture of resistance, and when phenotypic data are available, to find candidate genetic loci underlying other positively selected traits in clonal bacteria. IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a significant burden on global health. Antibiotic treatment imposes strong selective pressure on M. tuberculosis populations. Identifying the mutations that cause drug resistance in M. tuberculosis is important for guiding TB treatment and halting the spread of drug resistance. Whole-genome sequencing (WGS) of M. tuberculosis isolates can be used to identify novel mutations mediating drug resistance and to predict resistance patterns faster than traditional methods of drug susceptibility testing. We have used WGS from natural populations of drug-resistant M. tuberculosis to characterize effects of selection for advantageous mutations on patterns of diversity at genes involved in drug resistance. The methods developed here can be used to identify novel advantageous mutations, including new resistance loci, in M. tuberculosis and other clonal pathogens.
Collapse
Affiliation(s)
- Tatum D. Mortimer
- Division of Infectious Diseases, Department of Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Alexandra M. Weber
- Division of Infectious Diseases, Department of Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Caitlin S. Pepperell
- Division of Infectious Diseases, Department of Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
50
|
Brites D, Gagneux S. The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:1-26. [DOI: 10.1007/978-3-319-64371-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|