1
|
Marcos-Vilchis A, Espinosa N, Alvarez AF, Puente JL, Soto JE, González-Pedrajo B. On the role of the sorting platform in hierarchical type III secretion regulation in enteropathogenic Escherichia coli. J Bacteriol 2025; 207:e0044624. [PMID: 40029102 PMCID: PMC11925242 DOI: 10.1128/jb.00446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
The virulence of enteropathogenic Escherichia coli (EPEC) depends on a type III secretion system (T3SS), a membrane-spanning apparatus that injects effector proteins into the cytoplasm of target enterocytes. The T3SS, or injectisome, is a self-assembled nanomachine whose biogenesis and function rely on the ordered secretion of three distinct categories of proteins: early, middle, and late type III substrates. In EPEC, this hierarchical secretion is assisted by several cytosolic protein complexes at the base of the injectisome. Among these, the sorting platform is involved in the recognition and sequential loading of the different classes of T3-substrates. In addition, a heterotrimeric gatekeeper complex, also known as a molecular switch, operates in concert with components of the T3SS export apparatus to guarantee the delivery of middle substrates prior to late substrate secretion. In this study, we showed that the sorting platform is differentially required for the secretion of distinct categories of substrates. Moreover, we demonstrated a cooperative interplay and protein-protein interactions between the sorting platform and the gatekeeper complex for proper middle and late substrate docking and secretion. Overall, our results provide new insights into the intricate molecular mechanisms that regulate protein secretion hierarchy during T3SS assembly.IMPORTANCEEnteropathogenic Escherichia coli employs a type III secretion system to deliver virulence proteins directly into host cells, disrupting multiple cellular processes to promote infection. This multiprotein system assembles in a precise stepwise manner, with specific proteins being recruited and secreted at distinct stages. The sorting platform and the gatekeeper complex play critical roles in regulating this process, but their cooperative mechanism has not been fully elucidated. Here, we reveal a novel functional interaction between these two components, which is critical for hierarchical substrate recognition and secretion. These findings advance our understanding of the molecular mechanisms underlying bacterial virulence and suggest new potential targets for antimicrobial strategies aimed at disrupting T3SS function.
Collapse
Affiliation(s)
- Arely Marcos-Vilchis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Norma Espinosa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrián F Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - J Eduardo Soto
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Drehkopf S, Otten C, Büttner D. Recognition of a translocation motif in the regulator HpaA from Xanthomonas euvesicatoria is controlled by the type III secretion chaperone HpaB. FRONTIERS IN PLANT SCIENCE 2022; 13:955776. [PMID: 35968103 PMCID: PMC9366055 DOI: 10.3389/fpls.2022.955776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The Gram-negative plant-pathogenic bacterium Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato plants. Pathogenicity of X. euvesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells and is associated with an extracellular pilus and a translocon in the plant plasma membrane. Effector protein translocation is activated by the cytoplasmic T3S chaperone HpaB which presumably targets effectors to the T3S system. We previously reported that HpaB is controlled by the translocated regulator HpaA which binds to and inactivates HpaB during the assembly of the T3S system. In the present study, we show that translocation of HpaA depends on the T3S substrate specificity switch protein HpaC and likely occurs after pilus and translocon assembly. Translocation of HpaA requires the presence of a translocation motif (TrM) in the N-terminal region. The TrM consists of an arginine-and proline-rich amino acid sequence and is also essential for the in vivo function of HpaA. Mutation of the TrM allowed the translocation of HpaA in hpaB mutant strains but not in the wild-type strain, suggesting that the recognition of the TrM depends on HpaB. Strikingly, the contribution of HpaB to the TrM-dependent translocation of HpaA was independent of the presence of the C-terminal HpaB-binding site in HpaA. We propose that HpaB generates a recognition site for the TrM at the T3S system and thus restricts the access to the secretion channel to effector proteins. Possible docking sites for HpaA at the T3S system were identified by in vivo and in vitro interaction studies and include the ATPase HrcN and components of the predicted cytoplasmic sorting platform of the T3S system. Notably, the TrM interfered with the efficient interaction of HpaA with several T3S system components, suggesting that it prevents premature binding of HpaA. Taken together, our data highlight a yet unknown contribution of the TrM and HpaB to substrate recognition and suggest that the TrM increases the binding specificity between HpaA and T3S system components.
Collapse
|
3
|
Sarkar P, Issac PK, Raju SV, Elumalai P, Arshad A, Arockiaraj J. Pathogenic bacterial toxins and virulence influences in cultivable fish. AQUACULTURE RESEARCH 2021; 52:2361-2376. [DOI: 10.1111/are.15089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 10/16/2023]
Affiliation(s)
- Purabi Sarkar
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Praveen Kumar Issac
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Stefi V. Raju
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Preetham Elumalai
- Department of Fish Processing Technology Kerala University of Fisheries and Ocean Studies (KUFOS) Kochi India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Selangor Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| |
Collapse
|
4
|
Gan YL, Yang LY, Yang LC, Li WL, Liang XL, Jiang W, Jiang GF, Hang XH, Yang M, Tang JL, Jiang BL. The C-terminal domain of the type III secretion chaperone HpaB contributes to dissociation of chaperone-effector complex in Xanthomonas campestris pv. campestris. PLoS One 2021; 16:e0246033. [PMID: 33507993 PMCID: PMC7842900 DOI: 10.1371/journal.pone.0246033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/12/2021] [Indexed: 12/01/2022] Open
Abstract
Many animal and plant pathogenic bacteria employ a type three secretion system (T3SS) to deliver type three effector proteins (T3Es) into host cells. Efficient secretion of many T3Es in the plant pathogen Xanthomonas campestris pv. campestris (Xcc) relies on the global chaperone HpaB. However, how the domain of HpaB itself affects effector translocation/secretion is poorly understood. Here, we used genetic and biochemical approaches to identify a novel domain at the C-terminal end of HpaB (amino acid residues 137-160) that contributes to virulence and hypersensitive response (HR). Both in vitro secretion assay and in planta translocation assay showed that the secretion and translocation of T3E proteins depend on the C-terminal region of HpaB. Deletion of the C-terminal region of HpaB did not affect binding to T3Es, self-association or interaction with T3SS components. However, the deletion of C-terminal region sharply reduced the mounts of free T3Es liberated from the complex of HpaB with the T3Es, a reaction catalyzed in an ATP-dependent manner by the T3SS-associated ATPase HrcN. Our findings demonstrate the C-terminal domain of HpaB contributes to disassembly of chaperone-effector complex and reveal a potential molecular mechanism underpinning the involvement of HpaB in secretion of T3Es in Xcc.
Collapse
Affiliation(s)
- Yong-Liang Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Li-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Li-Chao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wan-Lian Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xue-Lian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | | | - Xiao-Hong Hang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bo-Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Lonjon F, Rengel D, Roux F, Henry C, Turner M, Le Ru A, Razavi N, Sabbagh CRR, Genin S, Vailleau F. HpaP Sequesters HrpJ, an Essential Component of Ralstonia solanacearum Virulence That Triggers Necrosis in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:200-211. [PMID: 31567040 DOI: 10.1094/mpmi-05-19-0139-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Gram-negative bacterium Ralstonia solanacearum, the causal agent of bacterial wilt, is a worldwide major crop pathogen whose virulence strongly relies on a type III secretion system (T3SS). This extracellular apparatus allows the translocation of proteins, called type III effectors (T3Es), directly into the host cells. To date, very few data are available in plant-pathogenic bacteria concerning the role played by type III secretion (T3S) regulators at the posttranslational level. We have demonstrated that HpaP, a putative T3S substrate specificity switch protein of R. solanacearum, controls T3E secretion. To better understand the role of HpaP on T3S control, we analyzed the secretomes of the GMI1000 wild-type strain as well as the hpaP mutant using a mass spectrometry experiment (liquid chromatography tandem mass spectrometry). The secretomes of both strains appeared to be very similar and highlighted the modulation of the secretion of few type III substrates. Interestingly, only one type III-associated protein, HrpJ, was identified as specifically secreted by the hpaP mutant. HrpJ appeared to be an essential component of the T3SS, essential for T3S and pathogenicity. We further showed that HrpJ is specifically translocated in planta by the hpaP mutant and that HrpJ can physically interact with HpaP. Moreover, confocal microscopy experiments demonstrated a cytoplasmic localization for HrpJ once in planta. When injected into Arabidopsis thaliana leaves, HrpJ is able to trigger a necrosis on 16 natural accessions. A genome-wide association mapping revealed a major association peak with 12 highly significant single-nucleotide polymorphisms located on a plant acyl-transferase.
Collapse
Affiliation(s)
- Fabien Lonjon
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Fabrice Roux
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Céline Henry
- Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Marie Turner
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Research Federation "Agrobiosciences, Interactions et Biodiversité" Castanet-Tolosan, France
| | - Narjes Razavi
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Stéphane Genin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
6
|
Hausner J, Jordan M, Otten C, Marillonnet S, Büttner D. Modular Cloning of the Type III Secretion Gene Cluster from the Plant-Pathogenic Bacterium Xanthomonas euvesicatoria. ACS Synth Biol 2019; 8:532-547. [PMID: 30694661 DOI: 10.1021/acssynbio.8b00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type III secretion (T3S) systems are essential pathogenicity factors of most Gram-negative bacteria and translocate effector proteins into plant or animal cells. T3S systems can, therefore, be used as tools for protein delivery into eukaryotic cells, for instance after transfer of the T3S gene cluster into nonpathogenic recipient strains. Here, we report the modular cloning of the T3S gene cluster from the plant-pathogenic bacterium Xanthomonas euvesicatoria. The resulting multigene construct encoded a functional T3S system and delivered effector proteins into plant cells. The modular design of the T3S gene cluster allowed the efficient replacement and rearrangement of single genes or operons and the insertion of reporter genes for functional studies. In the present study, we used the modular T3S system to analyze the assembly of a fluorescent fusion of the predicted cytoplasmic ring protein HrcQ. Our studies demonstrate the use of the modular T3S gene cluster for functional analyses and mutant approaches in X. euvesicatoria. A potential application of the modular T3S system as protein delivery tool is discussed.
Collapse
Affiliation(s)
- Jens Hausner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Saale, Germany
| | - Michael Jordan
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Saale, Germany
| | - Christian Otten
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Saale, Germany
| | | | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Saale, Germany
| |
Collapse
|
7
|
Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U. A conserved motif promotes HpaB-regulated export of type III effectors from Xanthomonas. MOLECULAR PLANT PATHOLOGY 2018; 19:2473-2487. [PMID: 30073738 PMCID: PMC6638074 DOI: 10.1111/mpp.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The type III secretion (T3S) system, an essential pathogenicity factor in most Gram-negative plant-pathogenic bacteria, injects bacterial effector proteins directly into the plant cell cytosol. Here, the type III effectors (T3Es) manipulate host cell processes to suppress defence and establish appropriate conditions for bacterial multiplication in the intercellular spaces of the plant tissue. T3E export depends on a secretion signal which is also present in 'non-effectors'. The latter are secreted extracellular components of the T3S apparatus, but are not translocated into the plant cell. How the T3S system discriminates between T3Es and non-effectors is still enigmatic. Previously, we have identified a putative translocation motif (TrM) in several T3Es from Xanthomonas campestris pv. vesicatoria (Xcv). Here, we analysed the TrM of the Xcv effector XopB in detail. Mutation studies showed that the proline/arginine-rich motif is required for efficient type III-dependent secretion and translocation of XopB and determines the dependence of XopB transport on the general T3S chaperone HpaB. Similar results were obtained for other effectors from Xcv. As the arginine residues of the TrM mediate specific binding of XopB to cardiolipin, one of the major lipid components in Xanthomonas membranes, we assume that the association of T3Es to the bacterial membrane prior to secretion supports type III-dependent export.
Collapse
Affiliation(s)
- Heike Prochaska
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sabine Thieme
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Sebastian Daum
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Jan Grau
- Institute for Informatics, Department of BioinformaticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Cornelius Schmidtke
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Magnus Hallensleben
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Peter John
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Kirsten Bacia
- Institute for Chemistry, Department of Biophysical ChemistryMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| | - Ulla Bonas
- Institute for Biology, Department of GeneticsMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
| |
Collapse
|
8
|
Scheibner F, Hartmann N, Hausner J, Lorenz C, Hoffmeister AK, Büttner D. The Type III Secretion Chaperone HpaB Controls the Translocation of Effector and Noneffector Proteins From Xanthomonas campestris pv. vesicatoria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:61-74. [PMID: 28771395 DOI: 10.1094/mpmi-06-17-0138-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pathogenicity of the gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which translocates effector proteins into plant cells. Effector proteins contain N-terminal T3S and translocation signals and interact with the T3S chaperone HpaB, which presumably escorts effectors to the secretion apparatus. The molecular mechanisms underlying the recognition of effectors by the T3S system are not yet understood. In the present study, we analyzed T3S and translocation signals in the type III effectors XopE2 and XopJ from X. campestris pv. vesicatoria. Both effectors contain minimal translocation signals, which are only recognized in the absence of HpaB. Additional N-terminal signals promote translocation of XopE2 and XopJ in the wild-type strain. The results of translocation and interaction studies revealed that the interaction of XopE2 and XopJ with HpaB and a predicted cytoplasmic substrate docking site of the T3S system is not sufficient for translocation. In agreement with this finding, we show that the presence of an artificial HpaB-binding site does not promote translocation of the noneffector XopA in the wild-type strain. Our data, therefore, suggest that the T3S chaperone HpaB not only acts as an escort protein but also controls the recognition of translocation signals.
Collapse
Affiliation(s)
- Felix Scheibner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nadine Hartmann
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Jens Hausner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Christian Lorenz
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Anne-Katrin Hoffmeister
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| |
Collapse
|
9
|
Maximiano MR, Oliveira-Neto OB, Franco OL, Mehta A. Validation of an in vitro system for studies of pathogenicity mechanisms in Xanthomonas campestris. FEMS Microbiol Lett 2017; 364:4494362. [PMID: 29040467 DOI: 10.1093/femsle/fnx217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
Several minimal media capable of inducing pathogenicity genes have been used to study plant-pathogen interactions. An in planta assay to study a closer interaction between the bacteria and the host was also developed and has been employed by our group. In order to determine whether growth medium could be improved to better approximate in planta conditions beyond that offered by the defined minimal medium XVM1, we compared the expression of 20 Xanthomonas campestris pv. campestris (Xcc) genes by quantitative reverse transcription - polymerase chain reaction (qRT-PCR) under in vivo (bacteria recovered from the plant) and in vitro (rich medium NYG, minimal medium XVM1 and XVM1 + leaf extract) growth systems. The results showed a higher expression level of the genes in the in planta system when compared to growth in culture media. In planta growth is closest to a real interaction condition and captures the complexity of the plant cell environment; however, this system has some limitations. The main finding of our work is that the addition of plant extract to XVM1 medium results in a gene expression profile that better matches the in planta profile, when compared with the XVM1 medium alone, giving support to the use of plant extract to study pathogenicity mechanisms in Xanthomonas.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, Distrito Federal 70770-917, Brazil.,Programa de Pós-Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, Minas Gerais, 36036-330, Brazil
| | - Osmundo B Oliveira-Neto
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, Distrito Federal 70770-917, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, Minas Gerais, 36036-330, Brazil.,S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil.,Centro de Analises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N, Modulo C, Sala 219, Brasília, Distrito Federal 70790-100, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, Distrito Federal 70770-917, Brazil
| |
Collapse
|
10
|
HpaB-Dependent Secretion of Type III Effectors in the Plant Pathogens Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria. Sci Rep 2017; 7:4879. [PMID: 28687734 PMCID: PMC5501821 DOI: 10.1038/s41598-017-04853-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/10/2017] [Indexed: 01/16/2023] Open
Abstract
Plant pathogenic bacteria exerts their pathogenicity through the injection of large repertoires of type III effectors (T3Es) into plant cells, a mechanism controlled in part by type III chaperones (T3Cs). In Ralstonia solanacearum, the causal agent of bacterial wilt, little is known about the control of type III secretion at the post-translational level. Here, we provide evidence that the HpaB and HpaD proteins do act as bona fide R. solanacearum class IB chaperones that associate with several T3Es. Both proteins can dimerize but do not interact with each other. After screening 38 T3Es for direct interactions, we highlighted specific and common interacting partners, thus revealing the first picture of the R. solanacearum T3C-T3E network. We demonstrated that the function of HpaB is conserved in two phytopathogenic bacteria, R. solanacearum and Xanthomonas campestris pv. vesicatoria (Xcv). HpaB from Xcv is able to functionally complement a R. solanacearum hpaB mutant for hypersensitive response elicitation on tobacco plants. Likewise, Xcv is able to translocate a heterologous T3E from R. solanacearum in an HpaB-dependent manner. This study underlines the central role of the HpaB class IB chaperone family and its potential contribution to the bacterial plasticity to acquire and deliver new virulence factors.
Collapse
|
11
|
Hausner J, Hartmann N, Jordan M, Büttner D. The Predicted Lytic Transglycosylase HpaH from Xanthomonas campestris pv. vesicatoria Associates with the Type III Secretion System and Promotes Effector Protein Translocation. Infect Immun 2017; 85:e00788-16. [PMID: 27895129 PMCID: PMC5278175 DOI: 10.1128/iai.00788-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/20/2016] [Indexed: 02/08/2023] Open
Abstract
The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which spans both bacterial membranes and translocates effector proteins into plant cells. The assembly of the T3S system presumably involves the predicted lytic transglycosylase (LT) HpaH, which is encoded adjacent to the T3S gene cluster. Bacterial LTs degrade peptidoglycan and often promote the formation of membrane-spanning macromolecular protein complexes. In the present study, we show that HpaH localizes to the bacterial periplasm and binds to peptidoglycan as well as to components of the T3S system, including the predicted periplasmic inner rod proteins HrpB1 and HrpB2 as well as the pilus protein HrpE. In vivo translocation assays revealed that HpaH promotes the translocation of various effector proteins and of early substrates of the T3S system, suggesting a general contribution of HpaH to type III-dependent protein export. Mutant studies and the analysis of reporter fusions showed that the N-terminal region of HpaH contributes to protein function and is proteolytically cleaved. The N-terminally truncated HpaH cleavage product is secreted into the extracellular milieu by a yet-unknown transport pathway, which is independent of the T3S system.
Collapse
Affiliation(s)
- Jens Hausner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nadine Hartmann
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Jordan
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
12
|
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [PMID: 27818950 PMCID: PMC5073101 DOI: 10.3389/fcimb.2016.00129] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Meztlli O Gaytán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Verónica I Martínez-Santos
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Eduardo Soto
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
13
|
Scheibner F, Schulz S, Hausner J, Marillonnet S, Büttner D. Type III-Dependent Translocation of HrpB2 by a Nonpathogenic hpaABC Mutant of the Plant-Pathogenic Bacterium Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol 2016; 82:3331-3347. [PMID: 27016569 PMCID: PMC4959247 DOI: 10.1128/aem.00537-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate effector proteins into plant cells. The T3S apparatus spans both bacterial membranes and is associated with an extracellular pilus and a channel-like translocon in the host plasma membrane. T3S is controlled by the switch protein HpaC, which suppresses secretion and translocation of the predicted inner rod protein HrpB2 and promotes secretion of translocon and effector proteins. We previously reported that HrpB2 interacts with HpaC and the cytoplasmic domain of the inner membrane protein HrcU (C. Lorenz, S. Schulz, T. Wolsch, O. Rossier, U. Bonas, and D. Büttner, PLoS Pathog 4:e1000094, 2008, http://dx.doi.org/10.1371/journal.ppat.1000094). However, the molecular mechanisms underlying the control of HrpB2 secretion are not yet understood. Here, we located a T3S and translocation signal in the N-terminal 40 amino acids of HrpB2. The results of complementation experiments with HrpB2 deletion derivatives revealed that the T3S signal of HrpB2 is essential for protein function. Furthermore, interaction studies showed that the N-terminal region of HrpB2 interacts with the cytoplasmic domain of HrcU, suggesting that the T3S signal of HrpB2 contributes to substrate docking. Translocation of HrpB2 is suppressed not only by HpaC but also by the T3S chaperone HpaB and its secreted regulator, HpaA. Deletion of hpaA, hpaB, and hpaC leads to a loss of pathogenicity but allows the translocation of fusion proteins between the HrpB2 T3S signal and effector proteins into leaves of host and non-host plants. IMPORTANCE The T3S system of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for pathogenicity and delivers effector proteins into plant cells. T3S depends on HrpB2, which is a component of the predicted periplasmic inner rod structure of the secretion apparatus. HrpB2 is secreted during the early stages of the secretion process and interacts with the cytoplasmic domain of the inner membrane protein HrcU. Here, we localized the secretion and translocation signal of HrpB2 in the N-terminal 40 amino acids and show that this region is sufficient for the interaction with the cytoplasmic domain of HrcU. Our results suggest that the T3S signal of HrpB2 is required for the docking of HrpB2 to the secretion apparatus. Furthermore, we provide experimental evidence that the N-terminal region of HrpB2 is sufficient to target effector proteins for translocation in a nonpathogenic X. campestris pv. vesicatoria strain.
Collapse
Affiliation(s)
- Felix Scheibner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Steve Schulz
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Hausner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
14
|
McNally RR, Zeng Q, Sundin GW. HrcU and HrpP are pathogenicity factors in the fire blight pathogen Erwinia amylovora required for the type III secretion of DspA/E. BMC Microbiol 2016; 16:88. [PMID: 27206522 PMCID: PMC4875606 DOI: 10.1186/s12866-016-0702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Background Many Gram-negative bacterial pathogens mediate host-microbe interactions via utilization of the type III secretion (T3S) system. The T3S system is a complex molecular machine consisting of more than 20 proteins. Collectively, these proteins translocate effectors across extracellular space and into the host cytoplasm. Successful translocation requires timely synthesis and allocation of both structural and secreted T3S proteins. Based on amino acid conservation in animal pathogenic bacteria, HrcU and HrpP were examined for their roles in regulation of T3S hierarchy. Results Both HrcU and HrpP were shown to be required for disease development in an immature pear infection model and respective mutants were unable to induce a hypersensitive response in tobacco. Using in vitro western blot analyses, both proteins were also shown to be required for the secretion of DspA/E, a type 3 effector and an important pathogenicity factor. Via yeast-two hybridization (Y2H), HrpP and HrcU were revealed to exhibit protein-protein binding. Finally, all HrcU and HrpP phenotypes identified were shown to be dependent on a conserved amino acid motif in the cytoplasmic tail of HrcU. Conclusions Collectively, these data demonstrate roles for HrcU and HrpP in regulating T3S and represent the first attempt in understanding T3S heirarchy in E. amylovora. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0702-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Ryan McNally
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.,Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Quan Zeng
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.,Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Roblin P, Dewitte F, Villeret V, Biondi EG, Bompard C. A Salmonella type three secretion effector/chaperone complex adopts a hexameric ring-like structure. J Bacteriol 2015; 197:688-98. [PMID: 25404693 PMCID: PMC4334183 DOI: 10.1128/jb.02294-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 11/20/2022] Open
Abstract
Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition.
Collapse
Affiliation(s)
- Pierre Roblin
- INRA Biopolymères, Interactions et Assemblages, Nantes, France Synchrotron SOLEIL, Gif sur Yvette, France
| | - Frédérique Dewitte
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Vincent Villeret
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Emanuele G Biondi
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Coralie Bompard
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Université Lille Nord de France, Villeneuve d'Ascq, France
| |
Collapse
|
16
|
Lohou D, Turner M, Lonjon F, Cazalé AC, Peeters N, Genin S, Vailleau F. HpaP modulates type III effector secretion in Ralstonia solanacearum and harbours a substrate specificity switch domain essential for virulence. MOLECULAR PLANT PATHOLOGY 2014; 15:601-14. [PMID: 24405562 PMCID: PMC6638691 DOI: 10.1111/mpp.12119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many pathogenic bacteria have evolved a type III secretion system (T3SS) to successfully invade their host. This extracellular apparatus allows the translocation of proteins, called type III effectors (T3Es), directly into the host cells. T3Es are virulence factors that have been shown to interfere with the host's immunity or to provide nutrients from the host to the bacteria. The Gram-negative bacterium Ralstonia solanacearum is a worldwide major crop pest whose virulence strongly relies on the T3SS. In R. solanacearum, transcriptional regulation has been extensively studied. However, very few data are available concerning the role played by type III-associated regulators, such as type III chaperones and T3SS control proteins. Here, we characterized HpaP, a putative type III secretion substrate specificity switch (T3S4) protein of R. solanacearum which is not secreted by the bacterium or translocated in the plant cells. HpaP self-interacts and interacts with the PopP1 T3E. HpaP modulates the secretion of early (HrpY pilin) and late (AvrA and PopP1 T3Es) type III substrates. HpaP is dispensable for the translocation of T3Es into the host cells. Finally, we identified two regions of five amino acids in the T3S4 domain that are essential for efficient PopP1 secretion and for HpaP's role in virulence on tomato and Arabidopsis thaliana, but not required for HpaP-HpaP and HpaP-PopP1 interactions. Taken together, our results indicate that HpaP is a putative R. solanacearum T3S4 protein important for full pathogenicity on several hosts, acting as a helper for PopP1 secretion, and repressing AvrA and HrpY secretion.
Collapse
Affiliation(s)
- David Lohou
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, F-31326, Castanet-Tolosan, France; Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, UMR2594, F-31326, Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Hausner J, Büttner D. The YscU/FlhB homologue HrcU from Xanthomonas controls type III secretion and translocation of early and late substrates. MICROBIOLOGY-SGM 2014; 160:576-588. [PMID: 24425767 DOI: 10.1099/mic.0.075176-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The majority of Gram-negative plant- and animal-pathogenic bacteria employ a type III secretion (T3S) system to deliver effector proteins to eukaryotic cells. Members of the YscU protein family are essential components of the T3S system and consist of a transmembrane and a cytoplasmic region that is autocatalytically cleaved at a conserved NPTH motif. YscU homologues interact with T3S substrate specificity switch (T3S4) proteins that alter the substrate specificity of the T3S system after assembly of the secretion apparatus. We previously showed that the YscU homologue HrcU from the plant pathogen Xanthomonas campestris pv. vesicatoria interacts with the T3S4 protein HpaC and is required for the secretion of translocon and effector proteins. In the present study, analysis of HrcU deletion, insertion and point mutant derivatives led to the identification of amino acid residues in the cytoplasmic region of HrcU (HrcUC) that control T3S and translocation of the predicted inner rod protein HrpB2, the translocon protein HrpF and the effector protein AvrBs3. Mutations in the vicinity of the NPTH motif interfered with HrcU cleavage and/or the interaction of HrcUC with HrpB2 and the T3S4 protein HpaC. However, HrcU function was not completely abolished, suggesting that HrcU cleavage is not crucial for pathogenicity and T3S. Given that mutations in HrcU differentially affected T3S and translocation of HrpB2 and effector proteins, we propose that HrcU controls the secretion of different T3S substrate classes by independent mechanisms.
Collapse
Affiliation(s)
- Jens Hausner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| |
Collapse
|
18
|
Chang JH, Desveaux D, Creason AL. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:317-45. [PMID: 24906130 DOI: 10.1146/annurev-phyto-011014-015624] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria have many export and secretion systems that translocate cargo into and across biological membranes. Seven secretion systems contribute to pathogenicity by translocating proteinaceous cargos that can be released into the extracellular milieu or directly into recipient cells. In this review, we describe these secretion systems and how their complexities and functions reflect differences in the destinations, states, functions, and sizes of the translocated cargos as well as the architecture of the bacterial cell envelope. We examine the secretion systems from the perspective of pathogenic bacteria that proliferate within plant tissues and highlight examples of translocated proteins that contribute to the infection and disease of plant hosts.
Collapse
Affiliation(s)
- Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331; ,
| | | | | |
Collapse
|
19
|
Lohou D, Lonjon F, Genin S, Vailleau F. Type III chaperones & Co in bacterial plant pathogens: a set of specialized bodyguards mediating effector delivery. FRONTIERS IN PLANT SCIENCE 2013; 4:435. [PMID: 24319448 PMCID: PMC3837300 DOI: 10.3389/fpls.2013.00435] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/12/2013] [Indexed: 05/19/2023]
Abstract
Gram-negative plant pathogenic bacteria possess a type III secretion system (T3SS) to inject bacterial proteins, called type III effectors (T3Es), into host cells through a specialized syringe structure. T3Es are virulence factors that can suppress plant immunity but they can also conversely be recognized by the plant and trigger specific resistance mechanisms. The T3SS and injected T3Es play a central role in determining the outcome of a host-pathogen interaction. Still little is known in plant pathogens on the assembly of the T3SS and the regulatory mechanisms involved in the temporal control of its biosynthesis and T3E translocation. However, recent insights point out the role of several proteins as prime candidates in the role of regulators of the type III secretion (T3S) process. In this review we report on the most recent advances on the regulation of the T3S by focusing on protein players involved in secretion/translocation regulations, including type III chaperones (T3Cs), type III secretion substrate specificity switch (T3S4) proteins and other T3S orchestrators.
Collapse
Affiliation(s)
- David Lohou
- Institut National de la Recherche Agronomique, UMR441, Laboratoire des Interactions Plantes-MicroorganismesCastanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR2594, Laboratoire des Interactions Plantes-MicroorganismesCastanet-Tolosan, France
| | - Fabien Lonjon
- Institut National de la Recherche Agronomique, UMR441, Laboratoire des Interactions Plantes-MicroorganismesCastanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR2594, Laboratoire des Interactions Plantes-MicroorganismesCastanet-Tolosan, France
| | - Stéphane Genin
- Institut National de la Recherche Agronomique, UMR441, Laboratoire des Interactions Plantes-MicroorganismesCastanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR2594, Laboratoire des Interactions Plantes-MicroorganismesCastanet-Tolosan, France
| | - Fabienne Vailleau
- Institut National de la Recherche Agronomique, UMR441, Laboratoire des Interactions Plantes-MicroorganismesCastanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR2594, Laboratoire des Interactions Plantes-MicroorganismesCastanet-Tolosan, France
- Institut National Polytechnique, École Nationale Supérieure Agronomique de Toulouse, Université de ToulouseCastanet-Tolosan, France
- *Correspondence: Fabienne Vailleau, Institut National de la Recherche Agronomique, UMR441, Laboratoire des Interactions Plantes-Microorganismes, CS 52627, 24 Chemin de Borde Rouge-Auzeville, Castanet-Tolosan cedex 31326, France e-mail:
| |
Collapse
|
20
|
Amer AAA, Costa TRD, Farag SI, Avican U, Forsberg Å, Francis MS. Genetically engineered frameshifted YopN-TyeA chimeras influence type III secretion system function in Yersinia pseudotuberculosis. PLoS One 2013; 8:e77767. [PMID: 24098594 PMCID: PMC3789692 DOI: 10.1371/journal.pone.0077767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/05/2013] [Indexed: 12/29/2022] Open
Abstract
Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact.
Collapse
Affiliation(s)
- Ayad A. A. Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Tiago R. D. Costa
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ummehan Avican
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Åke Forsberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
21
|
Hartmann N, Büttner D. The inner membrane protein HrcV from Xanthomonas spp. is involved in substrate docking during type III secretion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1176-1189. [PMID: 23777429 DOI: 10.1094/mpmi-01-13-0019-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenicity of the gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a membrane-spanning type III secretion (T3S) system, which translocates effector proteins into eukaryotic host cells. In this study, we characterized the T3S system component HrcV, which is a member of the YscV/FlhA family of inner membrane proteins. HrcV consists of eight transmembrane helices and a cytoplasmic region (HrcVC). Mutant and protein-protein interaction studies showed that HrcVC is essential for protein function and binds to T3S substrates, including the early substrate HrpB2, the pilus protein HrpE, and effector proteins. Furthermore, HrcVC interacts with itself and with components and control proteins of the T3S apparatus. The interaction of HrcVC with HrpB2, HrpE, and T3S system components depends on amino acid residues in a conserved motif, designated flagella/hypersensitive response/invasion proteins export pore (FHIPEP), which is located in a cytoplasmic loop between transmembrane helix four and five of HrcV. Mutations in the FHIPEP motif abolish HrcV function but do not affect the interaction of HrcVC with effector proteins.
Collapse
|
22
|
Hausner J, Hartmann N, Lorenz C, Büttner D. The periplasmic HrpB1 protein from Xanthomonas spp. binds to peptidoglycan and to components of the type III secretion system. Appl Environ Microbiol 2013; 79:6312-24. [PMID: 23934485 PMCID: PMC3811196 DOI: 10.1128/aem.01226-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/31/2013] [Indexed: 11/20/2022] Open
Abstract
The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate bacterial effector proteins into eukaryotic host cells. The membrane-spanning secretion apparatus consists of 11 core components and several associated proteins with yet unknown functions. In this study, we analyzed the role of HrpB1, which was previously shown to be essential for T3S and the formation of the extracellular T3S pilus. We provide experimental evidence that HrpB1 localizes to the bacterial periplasm and binds to peptidoglycan, which is in agreement with its predicted structural similarity to the putative peptidoglycan-binding domain of the lytic transglycosylase Slt70 from Escherichia coli. Interaction studies revealed that HrpB1 forms protein complexes and binds to T3S system components, including the inner membrane protein HrcD, the secretin HrcC, the pilus protein HrpE, and the putative inner rod protein HrpB2. The analysis of deletion and point mutant derivatives of HrpB1 led to the identification of amino acid residues that contribute to the interaction of HrpB1 with itself and HrcD and/or to protein function. The finding that HrpB1 and HrpB2 colocalize to the periplasm and both interact with HrcD suggests that they are part of a periplasmic substructure of the T3S system.
Collapse
Affiliation(s)
- Jens Hausner
- Institute of Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
23
|
Robin GP, Ortiz E, Szurek B, Brizard JP, Koebnik R. Comparative proteomics reveal new HrpX-regulated proteins of Xanthomonas oryzae pv. oryzae. J Proteomics 2013; 97:256-64. [PMID: 23603630 DOI: 10.1016/j.jprot.2013.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Pathogenicity of the rice pathogenic bacterium Xanthomonas oryzae pv. oryzae depends on a Hrp (hypersensitive response and pathogenicity) type III secretion system; the expression of which is induced in planta. Expression of the hrp operons is under transcriptional control of two key regulatory proteins, HrpG and HrpX. To identify new proteins that are co-regulated with the type III secretion system, we employed comparative proteomics. Cells of X. oryzae pv. oryzae ectopically expressing hrpX were compared to wild-type cells grown in vitro. Twenty protein spots with different abundances in both samples were identified by 2D-DIGE and LC-MS/MS. Seven spots could be unambiguously identified, corresponding to the HrpB1 protein, two different peptidyl-prolyl cis-trans isomerases, a component of an ATP binding cassette (ABC) transport system, an adenylate kinase, and a secreted protein of unknown function. Interestingly, the isoelectric point of the adenylate kinase was found to be under control of HrpX, most likely due to post-translational modification. Indeed, two glutamate residues of the adenylate kinase were found to be methylated but this modification did not account for the shift in electrophoretic mobility. In summary, we identified new HrpX-regulated proteins of X. oryzae pv. oryzae that might be important for pathogenicity. This article is part of a Special Issue entitled: Trends in microbial proteomics. BIOLOGICAL SIGNIFICANCE We use 2D-DIGE to compare the proteomes of rice-pathogenic xanthomonads. We identify seven proteins that are co-regulated with the type III secretion system. We find post-translational glutamate methylation of a bacterial adenylate cyclase. The newly identified HrpX-regulated proteins might be important for pathogenicity.
Collapse
Affiliation(s)
- Guillaume P Robin
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France
| | - Erika Ortiz
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France
| | - Boris Szurek
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France
| | - Jean-Paul Brizard
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France
| | - Ralf Koebnik
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France.
| |
Collapse
|
24
|
Cherradi Y, Schiavolin L, Moussa S, Meghraoui A, Meksem A, Biskri L, Azarkan M, Allaoui A, Botteaux A. Interplay between predicted inner-rod and gatekeeper in controlling substrate specificity of the type III secretion system. Mol Microbiol 2013; 87:1183-99. [PMID: 23336839 DOI: 10.1111/mmi.12158] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2013] [Indexed: 11/30/2022]
Abstract
The type III secretion apparatus (T3SA) is a multi-protein complex central to the virulence of many Gram-negative pathogens. Currently, the mechanisms controlling the hierarchical addressing of needle subunits, translocators and effectors to the T3SA are still poorly understood. In Shigella, MxiC is known to sequester effectors within the cytoplasm prior to receiving the activation signal from the needle. However, molecules involved in linking the needle and MxiC are unknown. Here, we demonstrate a molecular interaction between MxiC and the predicted inner-rod component MxiI suggesting that this complex plugs the T3SA entry gate. Our results suggest that MxiI-MxiC complex dissociation facilitates the switch in secretion from translocators to effectors. We identified MxiC(F)(206)(S) variant, unable to interact with MxiI, which exhibits a constitutive secretion phenotype although it remains responsive to induction. Moreover, we identified the mxiI(Q67A) mutant that only secretes translocators, a phenotype that was suppressed by coexpression of the MxiC(F)(206)(S) variant. We demonstrated the interaction between MxiI and MxiC homologues in Yersinia and Salmonella. Lastly, we identified an interaction between MxiC and chaperone IpgC which contributes to understanding how translocators secretion is regulated. In summary, this study suggests the existence of a widely conserved T3S mechanism that regulates effectors secretion.
Collapse
Affiliation(s)
- Youness Cherradi
- Laboratoire de Bactériologie Moléculaire, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lorenz C, Hausner J, Büttner D. HrcQ provides a docking site for early and late type III secretion substrates from Xanthomonas. PLoS One 2012; 7:e51063. [PMID: 23226460 PMCID: PMC3511370 DOI: 10.1371/journal.pone.0051063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Pathogenicity of many Gram-negative bacteria depends on a type III secretion (T3S) system which translocates bacterial effector proteins into eukaryotic cells. The membrane-spanning secretion apparatus is associated with a cytoplasmic ATPase complex and a predicted cytoplasmic (C) ring structure which is proposed to provide a substrate docking platform for secreted proteins. In this study, we show that the putative C ring component HrcQ from the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for bacterial pathogenicity and T3S. Fractionation studies revealed that HrcQ localizes to the cytoplasm and associates with the bacterial membranes under T3S-permissive conditions. HrcQ binds to the cytoplasmic T3S-ATPase HrcN, its predicted regulator HrcL and the cytoplasmic domains of the inner membrane proteins HrcV and HrcU. Furthermore, we observed an interaction between HrcQ and secreted proteins including early and late T3S substrates. HrcQ might therefore act as a general substrate acceptor site of the T3S system and is presumably part of a larger protein complex. Interestingly, the N-terminal export signal of the T3S substrate AvrBs3 is dispensable for the interaction with HrcQ, suggesting that binding of AvrBs3 to HrcQ occurs after its initial targeting to the T3S system.
Collapse
Affiliation(s)
- Christian Lorenz
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Hausner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
26
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
27
|
Role of EscP (Orf16) in injectisome biogenesis and regulation of type III protein secretion in enteropathogenic Escherichia coli. J Bacteriol 2012; 194:6029-45. [PMID: 22923600 DOI: 10.1128/jb.01215-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli employs a type III secretion system (T3SS) to translocate virulence effector proteins directly into enterocyte host cells, leading to diarrheal disease. The T3SS is encoded within the chromosomal locus of enterocyte effacement (LEE). The function of some of the LEE-encoded proteins remains unknown. Here we investigated the role of the Orf16 protein in T3SS biogenesis and function. An orf16 deletion mutant showed translocator and effector protein secretion profiles different from those of wild-type cells. The orf16 null strain produced T3S structures with abnormally long needles and filaments that caused weak hemolysis of red blood cells. Furthermore, the number of fully assembled T3SSs was also reduced in the orf16 mutant, indicating that Orf16, though not essential, is required for efficient T3SS assembly. Analysis of protein secretion revealed that Orf16 is a T3SS-secreted substrate and regulates the secretion of the inner rod component EscI. Both pulldown and yeast two-hybrid assays showed that Orf16 interacts with the C-terminal domain of an inner membrane component of the secretion apparatus, EscU; the inner rod protein EscI; the needle protein EscF; and the multieffector chaperone CesT. These results suggest that Orf16 regulates needle length and, along with EscU, participates in a substrate specificity switch from early substrates to translocators. Taken together, our results suggest that Orf16 acts as a molecular measuring device in a way similar to that of members of the Yersinia YscP and flagellar FliK protein family. Therefore, we propose that this protein be renamed EscP.
Collapse
|
28
|
Crabill E, Karpisek A, Alfano JR. The Pseudomonas syringae HrpJ protein controls the secretion of type III translocator proteins and has a virulence role inside plant cells. Mol Microbiol 2012; 85:225-38. [PMID: 22607547 DOI: 10.1111/j.1365-2958.2012.08097.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bacterial plant pathogen Pseudomonas syringae injects effector proteins into plant cells via a type III secretion system (T3SS), which is required for pathogenesis. The protein HrpJ is secreted by P. syringae and is required for a fully functional T3SS. A hrpJ mutant is non-pathogenic and cannot inject effectors into plant cells or secrete the harpin HrpZ1. Here we show that the hrpJ mutant also cannot secrete the harpins HrpW1 and HopAK1 or the translocator HrpK1, suggesting that these proteins are required in the translocation (injection) of effectors into plant cells. Complementation of the hrpJ mutant with secretion incompetent HrpJ derivatives restores the secretion of HrpZ1 and HrpW1 and the ability to elicit a hypersensitive response, a measure of translocation. However, growth in planta and disease symptom production is only partially restored, suggesting that secreted HrpJ may have a direct role in virulence. Transgenic Arabidopsis plants expressing HrpJ-HA complemented the virulence phenotype of the hrpJ mutant expressing a secretion incompetent HrpJ derivative and were reduced in their immune responses. Collectively, these data indicate that HrpJ has a dual role in P. syringae: inside bacterial cells HrpJ controls the secretion of translocator proteins and inside plant cells it suppresses plant immunity.
Collapse
Affiliation(s)
- Emerson Crabill
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0660, USA
| | | | | |
Collapse
|
29
|
Hartmann N, Schulz S, Lorenz C, Fraas S, Hause G, Büttner D. Characterization of HrpB2 from Xanthomonas campestris pv. vesicatoria identifies protein regions that are essential for type III secretion pilus formation. Microbiology (Reading) 2012; 158:1334-1349. [DOI: 10.1099/mic.0.057604-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Nadine Hartmann
- Institute of Biology, Genetics Department, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Steve Schulz
- Institute of Biology, Genetics Department, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Christian Lorenz
- Institute of Biology, Genetics Department, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Simone Fraas
- Biocenter of the Martin-Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Gerd Hause
- Biocenter of the Martin-Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Genetics Department, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| |
Collapse
|
30
|
Schulz S, Büttner D. Functional characterization of the type III secretion substrate specificity switch protein HpaC from Xanthomonas campestris pv. vesicatoria. Infect Immun 2011; 79:2998-3011. [PMID: 21576326 PMCID: PMC3147569 DOI: 10.1128/iai.00180-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/10/2011] [Indexed: 12/31/2022] Open
Abstract
Pathogenicity of Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into eukaryotic cells and is associated with an extracellular pilus and a translocon in the host plasma membrane. T3S substrate specificity is controlled by the cytoplasmic switch protein HpaC, which interacts with the C-terminal domain of the inner membrane protein HrcU (HrcU(C)). HpaC promotes the secretion of translocon and effector proteins but prevents the efficient secretion of the early T3S substrate HrpB2, which is required for pilus assembly. In this study, complementation assays with serial 10-amino-acid HpaC deletion derivatives revealed that the T3S substrate specificity switch depends on N- and C-terminal regions of HpaC, whereas amino acids 42 to 101 appear to be dispensable for the contribution of HpaC to the secretion of late substrates. However, deletions in the central region of HpaC affect the secretion of HrpB2, suggesting that the mechanisms underlying HpaC-dependent control of early and late substrates can be uncoupled. The results of interaction and expression studies with HpaC deletion derivatives showed that amino acids 112 to 212 of HpaC provide the binding site for HrcU(C) and severely reduce T3S when expressed ectopically in the wild-type strain. We identified a conserved phenylalanine residue at position 175 of HpaC that is required for both protein function and the binding of HpaC to HrcU(C). Taking these findings together, we concluded that the interaction between HpaC and HrcU(C) is essential but not sufficient for T3S substrate specificity switching.
Collapse
Affiliation(s)
- Steve Schulz
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| |
Collapse
|
31
|
Structure-function analysis of the HrpB2-HrcU interaction in the Xanthomonas citri type III secretion system. PLoS One 2011; 6:e17614. [PMID: 21408079 PMCID: PMC3052322 DOI: 10.1371/journal.pone.0017614] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/01/2011] [Indexed: 12/02/2022] Open
Abstract
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcUAAAH) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the ΔhrcU mutant with HrcUAAAH produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the ΔhrcU mutant complemented with HrcUAAAH, suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the ΔhrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.
Collapse
|
32
|
Lorenz C, Büttner D. Secretion of early and late substrates of the type III secretion system from Xanthomonas is controlled by HpaC and the C-terminal domain of HrcU. Mol Microbiol 2011; 79:447-67. [PMID: 21219463 PMCID: PMC3040844 DOI: 10.1111/j.1365-2958.2010.07461.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2010] [Indexed: 11/27/2022]
Abstract
The plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria utilizes a type III secretion (T3S) system to inject effector proteins into eukaryotic cells. T3S substrate specificity is controlled by HpaC, which promotes secretion of translocon and effector proteins but prevents efficient secretion of the early substrate HrpB2. HpaC and HrpB2 interact with the C-terminal domain (HrcU(C) ) of the FlhB/YscU homologue HrcU. Here, we provide experimental evidence that HrcU is proteolytically cleaved at the conserved NPTH motif, which is required for binding of both HpaC and HrpB2 to HrcU(C) . The results of mutant studies showed that cleavage of HrcU contributes to pathogenicity and secretion of late substrates but is dispensable for secretion of HrpB2, which is presumably secreted prior to HrcU cleavage. The introduction of a point mutation (Y318D) into HrcU(C) activated secretion of late substrates in the absence of HpaC and suppressed the hpaC mutant phenotype. However, secretion of HrpB2 was unaffected by HrcU(Y318D) , suggesting that the export of early and late substrates is controlled by independent mechanisms that can be uncoupled. As HrcU(Y318D) did not interact with HrpB2 and HpaC, we propose that the substrate specificity switch leads to the release of HrcU(C) -bound HrpB2 and HpaC.
Collapse
Affiliation(s)
- Christian Lorenz
- Institute of Biology, Department of Genetics, Martin-Luther University Halle-WittenbergD-06099 Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin-Luther University Halle-WittenbergD-06099 Halle (Saale), Germany
| |
Collapse
|
33
|
Szczesny R, Büttner D, Escolar L, Schulze S, Seiferth A, Bonas U. Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from Xanthomonas depends on a SNF1-related kinase. THE NEW PHYTOLOGIST 2010; 187:1058-1074. [PMID: 20609114 DOI: 10.1111/j.1469-8137.2010.03346.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
*Pathogenicity of the Gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria (Xcv) depends on a type III secretion system that translocates a cocktail of > 25 type III effector proteins into the plant cell. *In this study, we identified the effector AvrBsT as a suppressor of specific plant defense. AvrBsT belongs to the YopJ/AvrRxv protein family, members of which are predicted to act as proteases and/or acetyltransferases. *AvrBsT suppresses the hypersensitive response (HR) that is elicited by the effector protein AvrBs1 from Xcv in resistant pepper plants. HR suppression occurs inside the plant cell and depends on a conserved predicted catalytic residue of AvrBsT. Yeast two-hybrid based analyses identified plant interaction partners of AvrBs1 and AvrBsT, including a putative regulator of sugar metabolism, SNF1-related kinase 1 (SnRK1), as interactor of AvrBsT. Intriguingly, gene silencing experiments revealed that SnRK1 is required for the induction of the AvrBs1-specific HR. *We therefore speculate that SnRK1 is involved in the AvrBsT-mediated suppression of the AvrBs1-specific HR.
Collapse
Affiliation(s)
- Robert Szczesny
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Lucia Escolar
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Sebastian Schulze
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Anja Seiferth
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Ulla Bonas
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| |
Collapse
|
34
|
Berger C, Robin GP, Bonas U, Koebnik R. Membrane topology of conserved components of the type III secretion system from the plant pathogen Xanthomonas campestris pv. vesicatoria. Microbiology (Reading) 2010; 156:1963-1974. [DOI: 10.1099/mic.0.039248-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Type III secretion (T3S) systems play key roles in the assembly of flagella and the translocation of bacterial effector proteins into eukaryotic host cells. Eleven proteins which are conserved among Gram-negative plant and animal pathogenic bacteria have been proposed to build up the basal structure of the T3S system, which spans both inner and outer bacterial membranes. We studied six conserved proteins, termed Hrc, predicted to reside in the inner membrane of the plant pathogen Xanthomonas campestris pv. vesicatoria. The membrane topology of HrcD, HrcR, HrcS, HrcT, HrcU and HrcV was studied by translational fusions to a dual alkaline phosphatase–β-galactosidase reporter protein. Two proteins, HrcU and HrcV, were found to have the same membrane topology as the Yersinia homologues YscU and YscV. For HrcR, the membrane topology differed from the model for the homologue from Yersinia, YscR. For our data on three other protein families, exemplified by HrcD, HrcS and HrcT, we derived the first topology models. Our results provide what is believed to be the first complete model of the inner membrane topology of any bacterial T3S system and will aid in elucidating the architecture of T3S systems by ultrastructural analysis.
Collapse
Affiliation(s)
- Carolin Berger
- Institute of Biology, Department of Genetics, Martin-Luther-University, 06099 Halle, Germany
| | - Guillaume P. Robin
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia–CNRS–IRD, UMR 5096, IRD Montpellier, France
| | - Ulla Bonas
- Institute of Biology, Department of Genetics, Martin-Luther-University, 06099 Halle, Germany
| | - Ralf Koebnik
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia–CNRS–IRD, UMR 5096, IRD Montpellier, France
- Institute of Biology, Department of Genetics, Martin-Luther-University, 06099 Halle, Germany
| |
Collapse
|
35
|
Davis AJ, Díaz DADJ, Mecsas J. A dominant-negative needle mutant blocks type III secretion of early but not late substrates in Yersinia. Mol Microbiol 2010; 76:236-59. [PMID: 20199604 DOI: 10.1111/j.1365-2958.2010.07096.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Yersinia pseudotuberculosis uses a type III secretion system (T3SS) to deliver effectors into host cells. A key component of the T3SS is the needle, which is a hollow tube on the bacterial surface through which effectors are secreted, composed of the YscF protein. To study needle assembly, we performed a screen for dominant-negative yscF alleles that prevented effector secretion in the presence of wild-type (WT) YscF. One allele, yscF-L54V, prevents WT YscF secretion and needle assembly, although purified YscF-L54V polymerizes in vitro. YscF-L54V binds to its chaperones YscE and YscG, and the YscF-L54V-EG complex targets to the T3SS ATPase, YscN. We propose that YscF-L54V stalls at a binding site in the needle assembly pathway following its release from the chaperones, which blocks the secretion of WT YscF and other early substrates required for building a needle. Interestingly, YscF-L54V does not affect the activity of pre-assembled actively secreting machines, indicating that a factor and/or binding site required for YscF secretion is absent from T3SS machines already engaged in effector secretion. Thus, substrate switching may involve the removal of an early substrate-specific binding site as a mechanism to exclude early substrates from Yop-secreting machines.
Collapse
Affiliation(s)
- Alison J Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | |
Collapse
|
36
|
Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF, Charova SN, Kokkinidis M, Panopoulos NJ. Playing the "Harp": evolution of our understanding of hrp/hrc genes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:347-370. [PMID: 20455697 DOI: 10.1146/annurev-phyto-073009-114407] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
With the advent of recombinant DNA techniques, the field of molecular plant pathology witnessed dramatic shifts in the 1970s and 1980s. The new and conventional methodologies of bacterial molecular genetics put bacteria center stage. The discovery in the mid-1980s of the hrp/hrc gene cluster and the subsequent demonstration that it encodes a type III secretion system (T3SS) common to Gram negative bacterial phytopathogens, animal pathogens, and plant symbionts was a landmark in molecular plant pathology. Today, T3SS has earned a central role in our understanding of many fundamental aspects of bacterium-plant interactions and has contributed the important concept of interkingdom transfer of effector proteins determining race-cultivar specificity in plant-bacterium pathosystems. Recent developments in genomics, proteomics, and structural biology enable detailed and comprehensive insights into the functional architecture, evolutionary origin, and distribution of T3SS among bacterial pathogens and support current research efforts to discover novel antivirulence drugs.
Collapse
|
37
|
Büttner D, He SY. Type III protein secretion in plant pathogenic bacteria. PLANT PHYSIOLOGY 2009; 150:1656-64. [PMID: 19458111 PMCID: PMC2719110 DOI: 10.1104/pp.109.139089] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/13/2009] [Indexed: 05/18/2023]
Affiliation(s)
- Daniela Büttner
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
| | | |
Collapse
|
38
|
Morello JE, Collmer A. Pseudomonas syringae HrpP Is a type III secretion substrate specificity switch domain protein that is translocated into plant cells but functions atypically for a substrate-switching protein. J Bacteriol 2009; 191:3120-31. [PMID: 19270091 PMCID: PMC2681801 DOI: 10.1128/jb.01623-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/23/2009] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas syringae delivers virulence effector proteins into plant cells via an Hrp1 type III secretion system (T3SS). P. syringae pv. tomato DC3000 HrpP has a C-terminal, putative T3SS substrate specificity switch domain, like Yersinia YscP. A DeltahrpP DC3000 mutant could not cause disease in tomato or elicit a hypersensitive response (HR) in tobacco, but the HR could be restored by expression of HrpP in trans. Though HrpP is a relatively divergent protein in the T3SS of different P. syringae pathovars, hrpP from P. syringae pv. syringae 61 and P. syringae pv. phaseolicola 1448A restored HR elicitation and pathogenicity to DC3000 DeltahrpP. HrpP was translocated into Nicotiana benthamiana cells via the DC3000 T3SS when expressed from its native promoter, but it was not secreted in culture. N- and C-terminal truncations of HrpP were tested for their ability to be translocated and to restore HR elicitation activity to the DeltahrpP mutant. No N-terminal truncation completely abolished translocation, implying that HrpP has an atypical T3SS translocation signal. Deleting more than 20 amino acids from the C terminus abolished the ability to restore HR elicitation. HrpP fused to green fluorescent protein was no longer translocated but could restore HR elicitation activity to the DeltahrpP mutant, suggesting that translocation is not essential for the function of HrpP. No T3SS substrates were detectably secreted by DC3000 DeltahrpP except the pilin subunit HrpA, which unexpectedly was secreted poorly. HrpP may function somewhat differently than YscP because the P. syringae T3SS pilus likely varies in length due to differing plant cell walls.
Collapse
Affiliation(s)
- Joanne E Morello
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
39
|
Lorenz C, Büttner D. Functional characterization of the type III secretion ATPase HrcN from the plant pathogen Xanthomonas campestris pv. vesicatoria. J Bacteriol 2009; 191:1414-28. [PMID: 19114489 PMCID: PMC2648192 DOI: 10.1128/jb.01446-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 12/16/2008] [Indexed: 02/03/2023] Open
Abstract
Many gram-negative plant and animal pathogenic bacteria employ a type III secretion (T3S) system to inject effector proteins into the cytosol of eukaryotic host cells. The membrane-spanning T3S apparatus is associated with an ATPase that presumably provides the energy for the secretion process. Here, we describe the role of the predicted ATPase HrcN from the plant pathogenic bacterium Xanthomonas campestris pathovar vesicatoria. We show that HrcN hydrolyzes ATP in vitro and is essential for T3S and bacterial pathogenicity. Stability of HrcN in X. campestris pv. vesicatoria depends on the conserved HrcL protein, which interacts with HrcN in vitro and in vivo. Both HrcN and HrcL bind to the inner membrane protein HrcU and specifically localize to the bacterial membranes under T3S-permissive conditions. Protein-protein interaction studies revealed that HrcN also interacts with the T3S substrate specificity switch protein HpaC and the global T3S chaperone HpaB, which promotes secretion of multiple effector proteins. Using an in vitro chaperone release assay, we demonstrate that HrcN dissociates a complex between HpaB and the effector protein XopF1 in an ATP-dependent manner, suggesting that HrcN is involved in the release of HpaB-bound effectors. Effector release depends on a conserved glycine residue in the HrcN phosphate-binding loop, which is crucial for enzymatic activity and protein function during T3S. There is no experimental evidence that T3S can occur in the absence of the ATPase, in contrast to recent findings reported for animal pathogenic bacteria.
Collapse
Affiliation(s)
- Christian Lorenz
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, Saale, Germany
| | | |
Collapse
|
40
|
Wagner S, Sorg I, Degiacomi M, Journet L, Peraro MD, Cornelis GR. The helical content of the YscP molecular ruler determines the length of theYersiniainjectisome. Mol Microbiol 2009; 71:692-701. [DOI: 10.1111/j.1365-2958.2008.06556.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|