1
|
Castellan M, Zamperin G, Foiani G, Zorzan M, Priore MF, Drzewnioková P, Melchiotti E, Vascellari M, Monne I, Crovella S, Leopardi S, De Benedictis P. Immunological findings of West Caucasian bat virus in an accidental host. J Virol 2025; 99:e0191424. [PMID: 39846740 PMCID: PMC11853057 DOI: 10.1128/jvi.01914-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
The Lyssavirus genus includes seventeen viral species able to cause rabies, an acute and almost invariably fatal encephalomyelitis of mammals. Rabies virus (RABV), which represents the type species of the genus, is a multi-host pathogen that over the years has undergone multiple events of host-switching, thus occupying several geographical and ecological niches. In contrast, non-RABV lyssaviruses are mainly confined within a single natural host with rare spillover events. In this scenario, unveiling the mechanisms underlying the host immune response against a virus is crucial to understand the dynamics of infection and to predict the probability of colonization/adaptation to a new target species. Presently, the host response to lyssaviruses has only been partially explored, with the majority of data extrapolated from RABV infection. West Caucasian bat virus (WCBV), a divergent lyssavirus, has recently been associated with a spillover event to a domestic cat, raising concern about the risks to public health due to the circulation of the virus in its natural host. Through this study we have investigated the immune response determined by the WCBV versus two widely known lyssaviruses. We selected the Syrian hamster as representative of an accidental host, and chose the intramuscular route in order to mimic the natural infection. In hamsters, WCBV was highly pathogenic, determining 100% lethality and mild encephalitis. In comparison with Duvenhage virus (DUVV) and RABV, we found that WCBV displayed an intermediate ability to promote cellular antiviral response, produce pro-inflammatory cytokines, and recruit and activate lymphocytes in the hamsters' central nervous system. IMPORTANCE Although all lyssaviruses cause fatal encephalomyelitis in mammals, they display a different host tropism and pathogenicity, with the ecology of Rabies virus (RABV) continually evolving and adapting to new host species. In 2020, West Caucasian bat virus (WCBV) was identified as the causative agent of rabies in a domestic cat in Italy. This event raised concerns about its public health consequences, due to the absence of biologicals against the infection. Our study investigates the host immune response triggered by WCBV in comparison with a pathogenic strain of RABV and the low pathogenic Duvenhage lyssavirus (DUVV), as a proxy to understand the mechanisms leading to lyssavirus spillover and pathogenicity. We overall confirm that previous evidence indicating an inverse relationship between lyssavirus pathogenicity and immune response is applicable for WCBV as well. Importantly, this work represents the first transcriptomic analysis of the WCBV interaction in the central nervous system with an accidental host.
Collapse
Affiliation(s)
- Martina Castellan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Gianpiero Zamperin
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Greta Foiani
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maira Zorzan
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Maria Francesca Priore
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Petra Drzewnioková
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Erica Melchiotti
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Marta Vascellari
- Laboratory of Histopathology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Isabella Monne
- Viral Genomics and Transcriptomics Laboratory, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
2
|
Koraka P, Martina BE, Smreczak M, Orlowska A, Marzec A, Trebas P, Roose JM, Begeman L, Gerhauser I, Wohlsein P, Baumgärtner W, Zmudzinski J, D.M.E. Osterhaus A. Inhibition of caspase-1 prolongs survival of mice infected with rabies virus. Vaccine 2019; 37:4681-4685. [DOI: 10.1016/j.vaccine.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022]
|
3
|
Smreczak M, Orłowska A, Marzec A, Trębas P, Kycko A, Reichert M, Koraka P, Osterhaus AD, Żmudziński JF. The effect of combined drugs therapy on the course of clinical rabies infection in a murine model. Vaccine 2019; 37:4701-4709. [DOI: 10.1016/j.vaccine.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
|
4
|
Koraka P, Martina BEE, van den Ham HJ, Zaaraoui-Boutahar F, van IJcken W, Roose J, van Amerongen G, Andeweg A, Osterhaus ADME. Analysis of Mouse Brain Transcriptome After Experimental Duvenhage Virus Infection Shows Activation of Innate Immune Response and Pyroptotic Cell Death Pathway. Front Microbiol 2018; 9:397. [PMID: 29615985 PMCID: PMC5869263 DOI: 10.3389/fmicb.2018.00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/21/2018] [Indexed: 12/25/2022] Open
Abstract
Rabies is an important neglected disease, characterized by invariably fatal encephalitis. Several studies focus on understanding the pathogenic mechanisms of the prototype lyssavirus rabies virus (RABV) infection, and little is known about the pathogenesis of rabies caused by other lyssaviruses. We sought to characterize the host response to Duvenhage virus infection and compare it with responses observed during RABV infection by gene expression profiling of brains of mice with the respective infections. We found in both infections differentially expressed genes leading to increased expression of type I interferons (IFNs), chemokines, and proinflammatory cytokines. In addition several genes of the IFN signaling pathway are up-regulated, indicating a strong antiviral response and activation of the negative feedback mechanism to limit type I IFN responses. Furthermore we provide evidence that in the absence of significant neuronal apoptotic death, cell death of neurons is mediated via the pyroptotic pathway in both infections. Taken together, we have identified several genes and/or pathways for both infections that could be used to explore novel approaches for intervention strategies against rabies.
Collapse
Affiliation(s)
- Penelope Koraka
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands.,Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - Byron E E Martina
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands.,Artemis One Health Research Foundation, Delft, Netherlands
| | | | | | - Wilfred van IJcken
- Erasmus Centre for Genomics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Jouke Roose
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands.,Artemis One Health Research Foundation, Delft, Netherlands
| | | | - Arno Andeweg
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Albertus D M E Osterhaus
- Artemis One Health Research Foundation, Delft, Netherlands.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Abstract
Recent studies have clearly shown that bats are the reservoir hosts of a wide diversity of novel viruses with representatives from most of the known animal virus families. In many respects bats make ideal reservoir hosts for viruses: they are the only mammals that fly, thus assisting in virus dispersal; they roost in large numbers, thus aiding transmission cycles; some bats hibernate over winter, thus providing a mechanism for viruses to persist between seasons; and genetic factors may play a role in the ability of bats to host viruses without resulting in clinical disease. Within the broad diversity of viruses found in bats are some important neurological pathogens, including rabies and other lyssaviruses, and Hendra and Nipah viruses, two recently described viruses that have been placed in a new genus, Henipaviruses in the family Paramyxoviridae. In addition, bats can also act as alternative hosts for the flaviviruses Japanese encephalitis and St Louis encephalitis viruses, two important mosquito-borne encephalitogenic viruses, and bats can assist in the dispersal and over-wintering of these viruses. Bats are also the reservoir hosts of progenitors of SARS and MERS coronaviruses, although other animals act as spillover hosts. This chapter presents the physiological and ecological factors affecting the ability of bats to act as reservoirs of neurotropic viruses, and describes the major transmission cycles leading to human infection.
Collapse
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
6
|
Masatani T, Ozawa M, Yamada K, Ito N, Horie M, Matsuu A, Okuya K, Tsukiyama-Kohara K, Sugiyama M, Nishizono A. Contribution of the interaction between the rabies virus P protein and I-kappa B kinase ϵ to the inhibition of type I IFN induction signalling. J Gen Virol 2015; 97:316-326. [PMID: 26647356 DOI: 10.1099/jgv.0.000362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The P protein of rabies virus (RABV) is known to interfere with the phosphorylation of the host IFN regulatory factor 3 (IRF-3) and to consequently inhibit type I IFN induction. Previous studies, however, have only tested P proteins from laboratory-adapted fixed virus strains, and to the best of our knowledge there is no report about the effect of P proteins from street RABV strains or other lyssaviruses on the IRF-3-mediated type I IFN induction system. In this study, we evaluated the inhibitory effect of P proteins from several RABV strains, including fixed and street virus strains and other lyssaviruses (Lagos bat, Mokola and Duvenhage viruses), on IRF-3 signalling. All P proteins tested inhibited retinoic acid-inducible gene-1 (RIG-I)- and TANK binding kinase 1 (TBK1)-mediated IRF-3-dependent IFN-β promoter activities. On the other hand, the P proteins from the RABV street strains 1088 and HCM-9, but not from fixed strains Nishigahara (Ni) and CVS-11 and other lyssaviruses tested, significantly inhibited I-kappa B kinase ϵ (IKKϵ)-inducible IRF-3-dependent IFN-β promoter activity. Importantly, we revealed that the P proteins from the 1088 and HCM-9 strains, but not from the remaining viruses, interacted with IKKϵ. By using expression plasmids encoding chimeric P proteins from the 1088 strain and Ni strain, we found that the C-terminal region of the P protein is important for the interaction with IKKϵ. These findings suggest that the P protein of RABV street strains may contribute to efficient evasion of host innate immunity.
Collapse
Affiliation(s)
- Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Makoto Ozawa
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kentaro Yamada
- Research Promotion Institute, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.,Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masayuki Horie
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kosuke Okuya
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akira Nishizono
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| |
Collapse
|
7
|
Rupprecht CE, Kuzmin IV. Why we can prevent, control and possibly treat – but will not eradicate – rabies. Future Virol 2015. [DOI: 10.2217/fvl.15.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Rabies is an acute, progressive viral encephalitis. Despite historical recognition, millions still remain exposed annually. Most fatalities are of children, although this zoonosis is a vaccine-preventable disease. All developed countries interrupted canine transmission and increasingly, Asian and African communities recognize what Latin Americans demonstrated – dog rabies can be eliminated – by mass application of veterinary vaccines. Realistically, rabies is not a candidate for eradication. Management is lacking for major reservoirs, such as bats. Increasing pre-exposure immunization of individuals at risk, simplification of postexposure schedules, enhancing vaccine delivery by alternative routes, development of less expensive biologics and antiviral drugs, may lessen its impact if applied strategically in a One Health context.
Collapse
Affiliation(s)
| | - Ivan V Kuzmin
- University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
8
|
van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 2015; 235:277-87. [PMID: 25294743 DOI: 10.1002/path.4461] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 02/01/2023]
Abstract
The olfactory nerve consists mainly of olfactory receptor neurons and directly connects the nasal cavity with the central nervous system (CNS). Each olfactory receptor neuron projects a dendrite into the nasal cavity on the apical side, and on the basal side extends its axon through the cribriform plate into the olfactory bulb of the brain. Viruses that can use the olfactory nerve as a shortcut into the CNS include influenza A virus, herpesviruses, poliovirus, paramyxoviruses, vesicular stomatitis virus, rabies virus, parainfluenza virus, adenoviruses, Japanese encephalitis virus, West Nile virus, chikungunya virus, La Crosse virus, mouse hepatitis virus, and bunyaviruses. However, mechanisms of transport via the olfactory nerve and subsequent spread through the CNS are poorly understood. Proposed mechanisms are either infection of olfactory receptor neurons themselves or diffusion through channels formed by olfactory ensheathing cells. Subsequent virus spread through the CNS could occur by multiple mechanisms, including trans-synaptic transport and microfusion. Viral infection of the CNS can lead to damage from infection of nerve cells per se, from the immune response, or from a combination of both. Clinical consequences range from nervous dysfunction in the absence of histopathological changes to severe meningoencephalitis and neurodegenerative disease.
Collapse
Affiliation(s)
- Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Koraka P, Bosch BJ, Cox M, Chubet R, Amerongen GV, Lövgren-Bengtsson K, Martina BEE, Roose J, Rottier PJM, Osterhaus ADME. A recombinant rabies vaccine expressing the trimeric form of the glycoprotein confers enhanced immunogenicity and protection in outbred mice. Vaccine 2014; 32:4644-50. [PMID: 24962755 DOI: 10.1016/j.vaccine.2014.06.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
Rabies is a disease characterized by an invariably lethal encephalitis of viral origin that can be controlled by preventive vaccination programs of wildlife, domestic animals and humans in areas with a high risk of exposure. Currently available vaccines are expensive, cumbersome to produce and require intensive immunization and booster schemes to induce and maintain protective immunity. In the present study, we describe the development of candidate recombinant subunit rabies vaccines based on the glycoprotein G of the prototype rabies virus (RABV-G) expressed either as a monomer (RABV-mG) or in its native trimeric configuration (RABV-tG), with or without Matrix-M™ adjuvant. Immunogenicity and protective efficacy of the respective candidate vaccines were tested in outbred NIH Swiss albino mice. The RABV-tG candidate vaccine proved to be superior to the RABV-mG vaccine candidate both in terms of immunogenicity and efficacy. The relatively poor immunogenicity of the RABV-mG vaccine candidate was greatly improved by the addition of the adjuvant. A single, low dose of RABV-tG in combination with Matrix-M™ induced high levels of high avidity neutralizing antibodies and protected all mice against challenge with a lethal dose of RABV. Consequently RABV-tG used in combination with Matrix-M™ is a promising vaccine candidate that overcomes the limitations of currently used vaccines.
Collapse
Affiliation(s)
- Penelope Koraka
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam The Netherlands.
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3508TD Utrecht, The Netherlands
| | - Manon Cox
- Protein Sciences Corp, 1000 Research Parkway, Meriden, CT 06450-7159, USA
| | - Rick Chubet
- Protein Sciences Corp, 1000 Research Parkway, Meriden, CT 06450-7159, USA
| | - Geert van Amerongen
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam The Netherlands; Institute for Translational Immunology, PO Box 450, 3720 AL Bilthoven, The Netherlands
| | | | - Byron E E Martina
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam The Netherlands
| | - Jouke Roose
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam The Netherlands
| | - Peter J M Rottier
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3508TD Utrecht, The Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus Medical Centre, PO Box 2040, 3000 CA Rotterdam The Netherlands
| |
Collapse
|
10
|
Horton DL, Banyard AC, Marston DA, Wise E, Selden D, Nunez A, Hicks D, Lembo T, Cleaveland S, Peel AJ, Kuzmin IV, Rupprecht CE, Fooks AR. Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus. J Gen Virol 2014; 95:1025-1032. [PMID: 24496827 PMCID: PMC3983756 DOI: 10.1099/vir.0.061952-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In 2009, a novel lyssavirus (subsequently named Ikoma lyssavirus, IKOV) was detected in the brain of an African civet (Civettictis civetta) with clinical rabies in the Serengeti National Park of Tanzania. The degree of nucleotide divergence between the genome of IKOV and those of other lyssaviruses predicted antigenic distinction from, and lack of protection provided by, available rabies vaccines. In addition, the index case was considered likely to be an incidental spillover event, and therefore the true reservoir of IKOV remained to be identified. The advent of sensitive molecular techniques has led to a rapid increase in the discovery of novel viruses. Detecting viral sequence alone, however, only allows for prediction of phenotypic characteristics and not their measurement. In the present study we describe the in vitro and in vivo characterization of IKOV, demonstrating that it is (1) pathogenic by peripheral inoculation in an animal model, (2) antigenically distinct from current rabies vaccine strains and (3) poorly neutralized by sera from humans and animals immunized against rabies. In a laboratory mouse model, no protection was elicited by a licensed rabies vaccine. We also investigated the role of bats as reservoirs of IKOV. We found no evidence for infection among 483 individuals of at least 13 bat species sampled across sites in the Serengeti and Southern Kenya.
Collapse
Affiliation(s)
- Daniel L Horton
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Ashley C Banyard
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Denise A Marston
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Emma Wise
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - David Selden
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Alejandro Nunez
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Daniel Hicks
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Tiziana Lembo
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Alison J Peel
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, UK
| | - Ivan V Kuzmin
- Global Alliance for Rabies Control, Manhattan, KS, USA
| | - Charles E Rupprecht
- Ross University School of Veterinary Medicine, St Kitts.,Global Alliance for Rabies Control, Manhattan, KS, USA
| | - Anthony R Fooks
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK.,Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| |
Collapse
|
11
|
Wiltzer L, Okada K, Yamaoka S, Larrous F, Kuusisto HV, Sugiyama M, Blondel D, Bourhy H, Jans DA, Ito N, Moseley GW. Interaction of Rabies Virus P-Protein With STAT Proteins is Critical to Lethal Rabies Disease. J Infect Dis 2013; 209:1744-53. [DOI: 10.1093/infdis/jit829] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Bodewes R, Rubio García A, Wiersma LCM, Getu S, Beukers M, Schapendonk CME, van Run PRWA, van de Bildt MWG, Poen MJ, Osinga N, Sánchez Contreras GJ, Kuiken T, Smits SL, Osterhaus ADME. Novel B19-like parvovirus in the brain of a harbor seal. PLoS One 2013; 8:e79259. [PMID: 24223918 PMCID: PMC3818428 DOI: 10.1371/journal.pone.0079259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022] Open
Abstract
Using random PCR in combination with next-generation sequencing, a novel parvovirus was detected in the brain of a young harbor seal (Phoca vitulina) with chronic non-suppurative meningo-encephalitis that was rehabilitated at the Seal Rehabilitation and Research Centre (SRRC) in the Netherlands. In addition, two novel viruses belonging to the family Anelloviridae were detected in the lungs of this animal. Phylogenetic analysis of the coding sequence of the novel parvovirus, tentatively called Seal parvovirus, indicated that this virus belonged to the genus Erythrovirus, to which human parvovirus B19 also belongs. Although no other seals with similar signs were rehabilitated in SRRC in recent years, a prevalence study of tissues of seals from the same area collected in the period 2008-2012 indicated that the Seal parvovirus has circulated in the harbor seal population at least since 2008. The presence of the Seal parvovirus in the brain was confirmed by real-time PCR and in vitro replication. Using in situ hybridization, we showed for the first time that a parvovirus of the genus Erythrovirus was present in the Virchow-Robin space and in cerebral parenchyma adjacent to the meninges. These findings showed that a parvovirus of the genus Erythrovirus can be involved in central nervous system infection and inflammation, as has also been suspected but not proven for human parvovirus B19 infection.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- * E-mail:
| | - Ana Rubio García
- Seal Rehabilitation and Research Centre, Pieterburen, the Netherlands
| | | | - Sarah Getu
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Martijn Beukers
- Division of Diagnostic Imaging, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | | | - Marjolein J. Poen
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Nynke Osinga
- Seal Rehabilitation and Research Centre, Pieterburen, the Netherlands
| | | | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Saskia L. Smits
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Viroclinics Biosciences B.V., Rotterdam, the Netherlands
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Viroclinics Biosciences B.V., Rotterdam, the Netherlands
| |
Collapse
|