1
|
Afridi MI, Tu H. The Roles of Distinct Transcriptional Factors in the Innate Immunity of C. elegans. Cells 2025; 14:327. [PMID: 40072056 PMCID: PMC11899719 DOI: 10.3390/cells14050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Deleterious molecules or factors produced by pathogens can hinder the normal physiological functioning of organisms. In response to these survival challenges, organisms rely on innate immune signaling as their first line of defense, which regulates immune-responsive genes and antimicrobial peptides to protect against pathogenic infections. These genes are under the control of transcription factors, which are known to regulate the transcriptional activity of genes after binding to their regulatory sequences. Previous studies have employed Caenorhabditis elegans as a host-pathogen interaction model to demonstrate the essential role of different transcription factors in the innate immunity of worms. In this review, we summarize the advances made regarding the functioning of distinct transcription factors in the innate immune response upon pathogen infection. Finally, we discuss the open questions in the field, whose resolutions have the potential to expand our understanding of the mechanisms underlying the innate immunity of organisms.
Collapse
Affiliation(s)
- Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China;
| | - Haijun Tu
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
2
|
Wu J, Shen S, Wang D. 6-PPD quinone at environmentally relevant concentrations induces immunosenescenece by causing immunosuppression during the aging process. CHEMOSPHERE 2024; 368:143719. [PMID: 39522698 DOI: 10.1016/j.chemosphere.2024.143719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
6-PPD quinone (6-PPDQ) could accelerate aging process. However, the underlying mechanism for the acceleration in aging process remains largely unclear. We aimed to examine the role of immunosuppression in 6-PPDQ in causing accelerated aging process in Caenorhabditis elegans. 6-PPDQ (0.1-10 μg/L) could decrease locomotion and increase reactive oxygen species (ROS) generation at both adult day-8 and day-12. 6-PPDQ at adult day-12 induced more severe immunosuppression reflected by decrease in expression of antimicrobial genes (lys-1, lys-7, spp-1, and dod-6) compared to that at adult day-8. Meanwhile, 6-PPDQ (10 μg/L) affected expressions of some transcriptional factor genes during the aging. Among them, at adult day-8, susceptibility to 6-PPDQ toxicity was caused by RNAi of daf-16, bar-1, elt-2, atf-7, skn-1, and nhr-8, and resistance to 6-PPDQ toxicity was induced by RNAi of daf-5, daf-3, and daf-12. Additionally, RNAi of daf-16, bar-1, elt-2, atf-7, skn-1, and nhr-8 caused more severe decrease in lys-1 and lys-7 expressions in 6-PPDQ exposed nematodes, whereas decrease in lys-1 and lys-7 expressions in 6-PPDQ exposed nematodes was inhibited by RNAi of daf-5, daf-3, and daf-12. The 6-PPDQ toxicity and 6-PPDQ induced decrease in lys-1 and lys-7 expressions were further suppressed by RNAi of insulin ligand genes (ins-6, ins-7, and daf-28) and receptor gene daf-2. Therefore, immunosuppression-caused immunosenescenece mediated the acceleration in aging process in 6-PPDQ exposed nematodes, which was under the control of certain transcriptional factors.
Collapse
Affiliation(s)
- Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Shuhuai Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Hou J, Hu C, Li P, Lin D. Multidimensional bioresponses in nematodes contribute to the antagonistic toxic interaction between pentachlorophenol and TiO 2 nanoparticles in soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127587. [PMID: 34740505 DOI: 10.1016/j.jhazmat.2021.127587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Interactions between nanomaterials (NMs) and coexisting contaminants are important contributors to their joint biological effects, while the reverse actions of bioresponses in determining the toxic interaction between NMs and contaminants were rarely understood. Here, we investigated the toxic interaction and mechanism between TiO2 NMs (nTiO2) and pentachlorophenol (PCP) in soil using the model nematode (Caenorhabditis elegans). PCP (0.5-50 mg/kg) and nTiO2 (50-5000 mg/kg) co-exposures induced antagonistic effects on the survival, growth, and locomotion of nematodes, and the levels of ultrastructural damage and oxidative stress exhibited consistent alterations. Soil PCP concentrations changed insignificantly after the single or combined exposures, indicating a negligible direct interaction between PCP and nTiO2 under the soil condition. Transcriptomic analysis revealed that after 50 mg/kg PCP exposure, half of differentially expressed genes were involved in epidermal collagen synthesis, while the PCP-nTiO2 co-exposure particularly activated genes related to antistress responses and the positive regulation of physiological functions. Further biochemical analysis demonstrated the antagonistic interactions were derived from two aspects: 1) PCP-induced epidermal collagen incrassation lowered the bioaccumulation and toxicity of nTiO2; 2) nTiO2-activated glutathione detoxification pathway alleviated PCP-induced toxicity. These findings highlight the key role of bioresponses in determining toxic interactions between NMs and co-contaminants.
Collapse
Affiliation(s)
- Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chao Hu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Pei Li
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
5
|
Desaka N, Ota C, Nishikawa H, Yasuda K, Ishii N, Bito T, Kishinaga Y, Naito Y, Higashimura Y. Streptococcus thermophilus extends lifespan through activation of DAF-16-mediated antioxidant pathway in Caenorhabditis elegans. J Clin Biochem Nutr 2022; 70:7-13. [PMID: 35068675 PMCID: PMC8764109 DOI: 10.3164/jcbn.21-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Natsumi Desaka
- Department of Food Science, Ishikawa Prefectural University
| | - Chinatsu Ota
- United Graduate School of Agricultural Sciences, Tottori University
| | | | - Kayo Yasuda
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Naoaki Ishii
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Tomohiro Bito
- United Graduate School of Agricultural Sciences, Tottori University
| | - Yukio Kishinaga
- Research and Development Group, Mill Souhonsha Company Limited
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine
| | | |
Collapse
|
6
|
Zárate-Potes A, Yang W, Andresen B, Nakad R, Haase D, Rosenstiel P, Dierking K, Schulenburg H. The effects of nested miRNAs and their host genes on immune defense against Bacillus thuringiensis infection in Caenorhabditis elegans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104144. [PMID: 34051205 DOI: 10.1016/j.dci.2021.104144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNA-molecules that influence translation by binding to the target gene mRNA. Many miRNAs are found in nested arrangements within larger protein-coding host genes. miRNAs and host genes in a nested arrangement are often transcribed simultaneously, which may indicate that both have similar functions. miRNAs have been implicated in regulating defense responses against pathogen infection in C. elegans and in mammals. Here, we asked if miRNAs in nested arrangements and their host genes are involved in the C. elegans response against infection with Bacillus thuringiensis (Bt). We performed miRNA sequencing and subsequently focused on four nested miRNA-host gene arrangements for a functional genetic analysis. We identified mir-58.1 and mir-2 as negative regulators of C. elegans resistance to Bt infection. However, we did not find any miRNA/host gene pair in which both contribute to defense against Bt.
Collapse
Affiliation(s)
- Alejandra Zárate-Potes
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Bentje Andresen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Rania Nakad
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Daniela Haase
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology (IKMB), Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany; Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany.
| |
Collapse
|
7
|
microRNAs involved in the control of toxicity on locomotion behavior induced by simulated microgravity stress in Caenorhabditis elegans. Sci Rep 2020; 10:17510. [PMID: 33060753 PMCID: PMC7567087 DOI: 10.1038/s41598-020-74582-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs) post-transcriptionally regulate the expression of targeted genes. We here systematically identify miRNAs in response to simulated microgravity based on both expressions and functional analysis in Caenorhabditis elegans. After simulated microgravity treatment, we observed that 19 miRNAs (16 down-regulated and 3 up-regulated) were dysregulated. Among these dysregulated miRNAs, let-7, mir-54, mir-67, mir-85, mir-252, mir-354, mir-789, mir-2208, and mir-5592 were required for the toxicity induction of simulated microgravity in suppressing locomotion behavior. In nematodes, alteration in expressions of let-7, mir-67, mir-85, mir-252, mir-354, mir-789, mir-2208, and mir-5592 mediated a protective response to simulated microgravity, whereas alteration in mir-54 expression mediated the toxicity induction of simulated microgravity. Moreover, among these candidate miRNAs, let-7 regulated the toxicity of simulated microgravity by targeting and suppressing SKN-1/Nrf protein. In the intestine, a signaling cascade of SKN-1/Nrf-GST-4/GST-5/GST-7 required for the control of oxidative stress was identified to act downstream of let-7 to regulate the toxicity of simulated microgravity. Our data demonstrated the crucial function of miRNAs in regulating the toxicity of simulated microgravity stress in organisms. Moreover, our results further provided an important molecular basis for epigenetic control of toxicity of simulated microgravity.
Collapse
|
8
|
Rajan M, Anderson CP, Rindler PM, Romney SJ, Ferreira dos Santos MC, Gertz J, Leibold EA. NHR-14 loss of function couples intestinal iron uptake with innate immunity in C. elegans through PQM-1 signaling. eLife 2019; 8:e44674. [PMID: 31532389 PMCID: PMC6777940 DOI: 10.7554/elife.44674] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is essential for survival of most organisms. All organisms have thus developed mechanisms to sense, acquire and sequester iron. In C. elegans, iron uptake and sequestration are regulated by HIF-1. We previously showed that hif-1 mutants are developmentally delayed when grown under iron limitation. Here we identify nhr-14, encoding a nuclear receptor, in a screen conducted for mutations that rescue the developmental delay of hif-1 mutants under iron limitation. nhr-14 loss upregulates the intestinal metal transporter SMF-3 to increase iron uptake in hif-1 mutants. nhr-14 mutants display increased expression of innate immune genes and DAF-16/FoxO-Class II genes, and enhanced resistance to Pseudomonas aeruginosa. These responses are dependent on the transcription factor PQM-1, which localizes to intestinal cell nuclei in nhr-14 mutants. Our data reveal how C. elegans utilizes nuclear receptors to regulate innate immunity and iron availability, and show iron sequestration as a component of the innate immune response.
Collapse
Affiliation(s)
- Malini Rajan
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Cole P Anderson
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Paul M Rindler
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Steven Joshua Romney
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Maria C Ferreira dos Santos
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Jason Gertz
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUnited States
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUnited States
| | - Elizabeth A Leibold
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUnited States
| |
Collapse
|
9
|
Moore RS, Kaletsky R, Murphy CT. Piwi/PRG-1 Argonaute and TGF-β Mediate Transgenerational Learned Pathogenic Avoidance. Cell 2019; 177:1827-1841.e12. [PMID: 31178117 DOI: 10.1016/j.cell.2019.05.024] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/04/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
The ability to inherit learned information from parents could be evolutionarily beneficial, enabling progeny to better survive dangerous conditions. We discovered that, after C. elegans have learned to avoid the pathogenic bacteria Pseudomonas aeruginosa (PA14), they pass this learned behavior on to their progeny, through either the male or female germline, persisting through the fourth generation. Expression of the TGF-β ligand DAF-7 in the ASI sensory neurons correlates with and is required for this transgenerational avoidance behavior. Additionally, the Piwi Argonaute homolog PRG-1 and its downstream molecular components are required for transgenerational inheritance of both avoidance behavior and ASI daf-7 expression. Animals whose parents have learned to avoid PA14 display a PA14 avoidance-based survival advantage that is also prg-1 dependent, suggesting an adaptive response. Transgenerational epigenetic inheritance of pathogenic learning may optimize progeny decisions to increase survival in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Rebecca S Moore
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Dulovic A, Streit A. RNAi-mediated knockdown of daf-12 in the model parasitic nematode Strongyloides ratti. PLoS Pathog 2019; 15:e1007705. [PMID: 30925161 PMCID: PMC6457571 DOI: 10.1371/journal.ppat.1007705] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 03/13/2019] [Indexed: 01/27/2023] Open
Abstract
The gene daf-12 has long shown to be involved in the dauer pathway in Caenorhabditis elegans (C. elegans). Due to the similarities of the dauer larvae of C. elegans and infective larvae of certain parasitic nematodes such as Strongyloides spp., this gene has also been suspected to be involved in the development of infective larvae. Previous research has shown that the application of dafachronic acid, the steroid hormone ligand of DAF-12 in C. elegans, affects the development of infective larvae and metabolism in Strongyloides. However, a lack of tools for either forward or reverse genetics within Strongyloides has limited studies of gene function within these important parasites. After determining whether Strongyloides had the requisite proteins for RNAi, we developed and report here the first successful RNAi by soaking protocol for Strongyloides ratti (S. ratti) and use this protocol to study the functions of daf-12 within S. ratti. Suppression of daf-12 in S. ratti severely impairs the formation of infective larvae of the direct cycle and redirects development towards the non-infective (non-dauer) free-living life cycle. Further, daf-12(RNAi) S. ratti produce slightly but significantly fewer offspring and these offspring are developmentally delayed or incapable of completing their development to infective larvae (L3i). Whilst the successful daf-12(RNAi) L3i are still able to infect a new host, the resulting infection is less productive and shorter lived. Further, daf-12 knockdown affects metabolism in S. ratti resulting in a shift from aerobic towards anaerobic fat metabolism. Finally, daf-12(RNAi) S. ratti have reduced tolerance of temperature stress.
Collapse
Affiliation(s)
- Alex Dulovic
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| | - Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| |
Collapse
|
11
|
Bouyanfif A, Jayarathne S, Koboziev I, Moustaid-Moussa N. The Nematode Caenorhabditis elegans as a Model Organism to Study Metabolic Effects of ω-3 Polyunsaturated Fatty Acids in Obesity. Adv Nutr 2019; 10:165-178. [PMID: 30689684 PMCID: PMC6370270 DOI: 10.1093/advances/nmy059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/06/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity is a complex disease that is influenced by several factors, such as diet, physical activity, developmental stage, age, genes, and their interactions with the environment. Obesity develops as a result of expansion of fat mass when the intake of energy, stored as triglycerides, exceeds its expenditure. Approximately 40% of the US population suffers from obesity, which represents a worldwide public health problem associated with chronic low-grade adipose tissue and systemic inflammation (sterile inflammation), in part due to adipose tissue expansion. In patients with obesity, energy homeostasis is further impaired by inflammation, oxidative stress, dyslipidemia, and metabolic syndrome. These pathologic conditions increase the risk of developing other chronic diseases including diabetes, hypertension, coronary artery disease, and certain forms of cancer. It is well documented that several bioactive compounds such as omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are able to reduce adipose and systemic inflammation and blood triglycerides and, in some cases, improve glucose intolerance and insulin resistance in vertebrate animal models of obesity. A promising model organism that is gaining tremendous interest for studies of lipid and energy metabolism is the nematode Caenorhabditis elegans. This roundworm stores fats as droplets within its hypodermal and intestinal cells. The nematode's transparent skin enables fat droplet visualization and quantification with the use of dyes that have affinity to lipids. This article provides a review of major research over the past several years on the use of C. elegans to study the effects of ω-3 PUFAs on lipid metabolism and energy homeostasis relative to metabolic diseases.
Collapse
Affiliation(s)
- Amal Bouyanfif
- Departments of Plant and Soil Science, Texas Tech University, Lubbock, TX
- Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Shasika Jayarathne
- Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | - Iurii Koboziev
- Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Departments of Plant and Soil Science, Texas Tech University, Lubbock, TX
- Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Cluster, Texas Tech University, Lubbock, TX
| |
Collapse
|
12
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
13
|
Park MR, Ryu S, Maburutse BE, Oh NS, Kim SH, Oh S, Jeong SY, Jeong DY, Oh S, Kim Y. Probiotic Lactobacillus fermentum strain JDFM216 stimulates the longevity and immune response of Caenorhabditis elegans through a nuclear hormone receptor. Sci Rep 2018; 8:7441. [PMID: 29748542 PMCID: PMC5945636 DOI: 10.1038/s41598-018-25333-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/23/2018] [Indexed: 01/14/2023] Open
Abstract
Here, we examined the functionality of Lactobacillus fermentum strain JDFM216, a newly isolated probiotic bacterium, using a Caenorhabditis elegans model. We determined bacterial colonization in the intestinal tract of C. elegans by plate counting and transmission electron microscopy and examined the survival of C. elegans using a solid killing assay. In addition, we employed DNA microarray analysis, quantitative real time-polymerase chain reaction, and immunoblotting assays to explore health-promoting pathways induced by probiotic bacteria in C. elegans. Initially, we found that the probiotic bacterium L. fermentum strain JDFM216 was not harmful to the C. elegans host. Conditioning with JDFM216 led to its colonization in the nematode intestine and enhanced resistance in nematodes exposed to food-borne pathogens, including Staphylococcus aureus and Escherichia coli O157:H7. Interestingly, this probiotic strain significantly prolonged the life span of C. elegans. Whole-transcriptome analysis and transgenic worm assays revealed that the health-promoting effects of JDFM216 were mediated by a nuclear hormone receptor (NHR) family and PMK-1 signaling. Taken together, we described a new C. elegans-based system to screen novel probiotic activity and demonstrated that preconditioning with the probiotic L. fermentum strain JDFM216 may positively stimulate the longevity of the C. elegans host via specific pathway.
Collapse
Affiliation(s)
- Mi Ri Park
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju, 54896, Korea
| | - Sangdon Ryu
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju, 54896, Korea
| | - Brighton E Maburutse
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju, 54896, Korea
| | - Nam Su Oh
- R&D Center, Seoul Dairy Cooperative, Ansan, Gyeonggi, 15407, South Korea
| | - Sae Hun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sejong Oh
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Korea
| | - Seong-Yeop Jeong
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk, 56048, Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk, 56048, Republic of Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea.
| | - Younghoon Kim
- Department of Animal Science and Institute of Milk Genomics, Chonbuk National University, Jeonju, 54896, Korea.
| |
Collapse
|
14
|
Kwon G, Lee J, Koh JH, Lim YH. Lifespan Extension of Caenorhabditis elegans by Butyricicoccus pullicaecorum and Megasphaera elsdenii with Probiotic Potential. Curr Microbiol 2017; 75:557-564. [PMID: 29222621 DOI: 10.1007/s00284-017-1416-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/06/2017] [Indexed: 11/27/2022]
Abstract
Butyricicoccus pullicaecorum and Megasphaera elsdenii inhabit the human intestine and have probiotic potential. The aim of this study was to evaluate the effects of B. pullicaecorum and M. elsdenii on the lifespan of Caenorhabditis elegans. They significantly (P < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers such as lipofuscin, body size, and locomotory activity showed that they retarded aging. They all failed to extend the lifespan of daf-12 or dbl-1 loss-of-function C. elegans mutants compared with E. coli OP50-fed worms. However, the increase in lifespan was observed in daf-16, jnk-1, pmk-1, and skn-1 mutants. Moreover, they increased the resistance of C. elegans to a human pathogen, Salmonella typhimurium. In conclusion, B. pullicaecorum and M. elsdenii extend the lifespan of C. elegans via the transforming growth factor-beta (TGF-β) pathway associated with anti-inflammatory processes in the innate immune system.
Collapse
Affiliation(s)
- Gayeung Kwon
- Department of Public Health Science (Brain Korea 21 PLUS Program), Graduate School, Korea University, Seoul, 136-701, Republic of Korea
| | - Jiyun Lee
- Department of Public Health Science (Brain Korea 21 PLUS Program), Graduate School, Korea University, Seoul, 136-701, Republic of Korea
| | - Jong-Ho Koh
- Department of Bio-Food Analysis and Processing, Bio-Campus Korea Polytechnic College, Nonsan, Chungnam, 32943, Republic of Korea
| | - Young-Hee Lim
- Department of Public Health Science (Brain Korea 21 PLUS Program), Graduate School, Korea University, Seoul, 136-701, Republic of Korea.
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 136-701, Republic of Korea.
- Department of Laboratory Medicine, Guro Hospital, Korea University, Seoul, 152-703, Republic of Korea.
| |
Collapse
|
15
|
mir-355 Functions as An Important Link between p38 MAPK Signaling and Insulin Signaling in the Regulation of Innate Immunity. Sci Rep 2017; 7:14560. [PMID: 29109437 PMCID: PMC5673931 DOI: 10.1038/s41598-017-15271-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
We performed a systematic identification of microRNAs (miRNAs) involved in the control of innate immunity. We identified 7 novel miRNA mutants with altered survival, colony forming in the body, and expression pattern of putative antimicrobial genes after Pseudomonas aeruginosa infection. Loss-of-function mutation of mir-45, mir-75, mir-246, mir-256, or mir-355 induced resistance to P. aeruginosa infection, whereas loss-of-function mutation of mir-63 or mir-360 induced susceptibility to P. aeruginosa infection. DAF-2 in the insulin signaling pathway acted as a target for intestinal mir-355 to regulate innate immunity. mir-355 functioned as an important link between p38 MAPK signaling pathway and insulin signaling pathway in the regulation of innate immunity. Our results provide an important molecular basis for further elucidation of the functions of various miRNAs in the regulation of innate immunity.
Collapse
|
16
|
Zhi L, Yu Y, Li X, Wang D, Wang D. Molecular Control of Innate Immune Response to Pseudomonas aeruginosa Infection by Intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 2017; 13:e1006152. [PMID: 28095464 PMCID: PMC5271417 DOI: 10.1371/journal.ppat.1006152] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 01/27/2017] [Accepted: 12/26/2016] [Indexed: 01/10/2023] Open
Abstract
The microRNA (miRNA) let-7 is an important miRNA identified in Caenorhabditis elegans and has been shown to be involved in the control of innate immunity. The underlying molecular mechanisms for let-7 regulation of innate immunity remain largely unclear. In this study, we investigated the molecular basis for intestinal let-7 in the regulation of innate immunity. Infection with Pseudomonas aeruginosa PA14 decreased let-7::GFP expression. Intestine- or neuron-specific activity of let-7 was required for its function in the regulation of innate immunity. During the control of innate immune response to P. aeruginosa PA14 infection, SDZ-24 was identified as a direct target for intestinal let-7. SDZ-24 was found to be predominantly expressed in the intestine, and P. aeruginosa PA14 infection increased SDZ-24::GFP expression. Intestinal let-7 regulated innate immune response to P. aeruginosa PA14 infection by suppressing both the expression and the function of SDZ-24. Knockout or RNA interference knockdown of sdz-24 dampened the resistance of let-7 mutant to P. aeruginosa PA14 infection. Intestinal overexpression of sdz-24 lacking 3'-UTR inhibited the susceptibility of nematodes overexpressing intestinal let-7 to P. aeruginosa PA14 infection. In contrast, we could observed the effects of intestinal let-7 on innate immunity in P. aeruginosa PA14 infected transgenic strain overexpressing sdz-24 containing 3'-UTR. In the intestine, certain SDZ-24-mediated signaling cascades were formed for nematodes against the P. aeruginosa PA14 infection. Our results highlight the crucial role of intestinal miRNAs in the regulation of the innate immune response to pathogenic infection.
Collapse
Affiliation(s)
- Lingtong Zhi
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yonglin Yu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xueying Li
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Daoyong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
17
|
Sun L, Zhi L, Shakoor S, Liao K, Wang D. microRNAs Involved in the Control of Innate Immunity in Candida Infected Caenorhabditis elegans. Sci Rep 2016; 6:36036. [PMID: 27796366 PMCID: PMC5086856 DOI: 10.1038/srep36036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
The role of microRNAs (miRNAs) in regulating innate immune response to Candida albicans infection in Caenorhabditis elegans is still largely unclear. Using small RNA SOLiD deep sequencing technique, we profiled the miRNAs that were dysregulated by C. albicans infection. We identified 16 miRNAs that were up-regulated and 4 miRNAs that were down-regulated in nematodes infected with C. albicans. Bioinformatics analysis implied that these dysregulated miRNAs may be involved in the control of many important biological processes. Using available mutants, we observed that mir-251 and mir-252 loss-of-function mutants were resistant to C. albicans infection, whereas mir-360 mutants were hypersensitive to C. albicans infection. The expression pattern of antimicrobial genes suggested that mir-251, mir-252, and mir-360 played crucial roles in regulating the innate immune response to C. albicans infection. Fungal burden might be closely associated with altered lifespan and innate immune response in mir-251, mir-252, and mir-360 mutants. Moreover, mir-251 and mir-252 might function downstream of p38 mitogen activated protein kinase (MAPK) or IGF-1/insulin-like pathway to regulate the innate immune response to C. albicans infection. Our results provide an important molecular basis for further elucidating how miRNA-mRNA networks may control the innate immune response to C. albicans infection.
Collapse
Affiliation(s)
- Lingmei Sun
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lingtong Zhi
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Shumaila Shakoor
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Kai Liao
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
18
|
Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. Sci Rep 2016; 6:31713. [PMID: 27531646 PMCID: PMC4987649 DOI: 10.1038/srep31713] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/25/2016] [Indexed: 02/06/2023] Open
Abstract
Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system.
Collapse
|
19
|
Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 2015; 88:290-301. [PMID: 26232625 PMCID: PMC4809198 DOI: 10.1016/j.freeradbiomed.2015.06.008] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/06/2023]
Abstract
The mammalian Nrf/CNC proteins (Nrf1, Nrf2, Nrf3, p45 NF-E2) perform a wide range of cellular protective and maintenance functions. The most thoroughly described of these proteins, Nrf2, is best known as a regulator of antioxidant and xenobiotic defense, but more recently has been implicated in additional functions that include proteostasis and metabolic regulation. In the nematode Caenorhabditis elegans, which offers many advantages for genetic analyses, the Nrf/CNC proteins are represented by their ortholog SKN-1. Although SKN-1 has diverged in aspects of how it binds DNA, it exhibits remarkable functional conservation with Nrf/CNC proteins in other species and regulates many of the same target gene families. C. elegans may therefore have considerable predictive value as a discovery model for understanding how mammalian Nrf/CNC proteins function and are regulated in vivo. Work in C. elegans indicates that SKN-1 regulation is surprisingly complex and is influenced by numerous growth, nutrient, and metabolic signals. SKN-1 is also involved in a wide range of homeostatic functions that extend well beyond the canonical Nrf2 function in responses to acute stress. Importantly, SKN-1 plays a central role in diverse genetic and pharmacologic interventions that promote C. elegans longevity, suggesting that mechanisms regulated by SKN-1 may be of conserved importance in aging. These C. elegans studies predict that mammalian Nrf/CNC protein functions and regulation may be similarly complex and that the proteins and processes that they regulate are likely to have a major influence on mammalian life- and healthspan.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA; Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Michael J Steinbaugh
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA; Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - John M Hourihan
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA; Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Collin Y Ewald
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA; Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Meltem Isik
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA; Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
20
|
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor is a key player in the cellular antioxidant response and it also controls various other functions in a cell-type specific manner. Due to these key functions, a tight control of NRF2 expression and activity is essential. This regulation is exerted at multiple levels, including transcriptional regulation and proteasomal degradation. Recent studies revealed important roles of miRNAs (miRs) in the control of NRF2 activity through direct targeting of the NRF2 mRNA and of mRNAs encoding proteins that control the level and activity of NRF2. In addition, NRF2 itself has been identified as a regulator of miRs, which exert some of the functions of NRF2 in metabolic regulation and also novel functions in the regulation of cell adhesion. Here, we summarize the roles and mechanisms of action of miRs in the regulation of NRF2 activity and as downstream effectors of this transcription factor.
Collapse
|
21
|
Caenorhabditis elegans microRNAs of the let-7 family act in innate immune response circuits and confer robust developmental timing against pathogen stress. Proc Natl Acad Sci U S A 2015; 112:E2366-75. [PMID: 25897023 DOI: 10.1073/pnas.1422858112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals maintain their developmental robustness against natural stresses through numerous regulatory mechanisms, including the posttranscriptional regulation of gene expression by microRNAs (miRNAs). Caenorhabditis elegans miRNAs of the let-7 family (let-7-Fam) function semiredundantly to confer robust stage specificity of cell fates in the hypodermal seam cell lineages. Here, we show reciprocal regulatory interactions between let-7-Fam miRNAs and the innate immune response pathway in C. elegans. Upon infection of C. elegans larvae with the opportunistic human pathogen Pseudomonas aeruginosa, the developmental timing defects of certain let-7-Fam miRNA mutants are enhanced. This enhancement is mediated by the p38 MAPK innate immune pathway acting in opposition to let-7-Fam miRNA activity, possibly via the downstream Activating Transcription Factor-7 (ATF-7). Furthermore, let-7-Fam miRNAs appear to exert negative regulation on the worm's resistance to P. aeruginosa infection. Our results show that the inhibition of pathogen resistance by let-7 involves downstream heterochronic genes and the p38 MAPK pathway. These findings suggest that let-7-Fam miRNAs are integrated into innate immunity gene regulatory networks, such that this family of miRNAs modulates immune responses while also ensuring robust timing of developmental events under pathogen stress.
Collapse
|
22
|
Dai LL, Gao JX, Zou CG, Ma YC, Zhang KQ. mir-233 modulates the unfolded protein response in C. elegans during Pseudomonas aeruginosa infection. PLoS Pathog 2015; 11:e1004606. [PMID: 25569229 PMCID: PMC4287614 DOI: 10.1371/journal.ppat.1004606] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023] Open
Abstract
The unfolded protein response (UPR), which is activated by perturbations of the endoplasmic reticulum homeostasis, has been shown to play an important role in innate immunity and inflammation. However, little is known about the molecular mechanisms underlying activation of the UPR during immune responses. Using small RNA deep sequencing and reverse genetic analysis, we show that the microRNA mir-233 is required for activation of the UPR in Caenorhabditis elegans exposed to Pseudomonas aeruginosa PA14. P. aeruginosa infection up-regulates the expression of mir-233 in a p38 MAPK-dependent manner. Quantitative proteomic analysis identifies SCA-1, a C. elegans homologue of the sarco/endoplasmic reticulum Ca2+-ATPase, as a target of mir-233. During P. aeruginosa PA14 infection, mir-233 represses the protein levels of SCA-1, which in turn leads to activation of the UPR. Whereas mir-233 mutants are more sensitive to P. aeruginosa infection, knockdown of sca-1 leads to enhanced resistance to the killing by P. aeruginosa. Our study indicates that microRNA-dependent pathways may have an impact on innate immunity by activating the UPR. In the model organism Caenorhabditis elegans, the IRE1–XBP1 pathway, a major branch of the unfolded protein response (UPR), is required for host defense against pathogens. However, how innate immune responses activate the UPR is not fully understood. In this report, we find that Pseudomonas aeruginosa PA14 infection up-regulates the expression of the microRNA mir-233 in C. elegans. The response of mir-233 to P. aeruginosa PA14 infection is dependent on a major pathway of innate immunity, the p38 MAPK signaling cascade. The up-regulation of mir-233 is functionally important since a mutation in mir-233 leads to hypersensitivity of the nematode to the killing by P. aeruginosa PA14. Furthermore, we demonstrate that mir-233 contributes to the activation of the UPR by repressing the protein levels of its target SCA-1, a C. elegans homologue of the sarco/endoplasmic reticulum Ca2+-ATPase. Thus, mir-233 is an important regulator of the UPR during the innate immune response.
Collapse
Affiliation(s)
- Li-Li Dai
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Jin-Xia Gao
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Cheng-Gang Zou
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
- * E-mail: (CGZ); (KQZ)
| | - Yi-Cheng Ma
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
- * E-mail: (CGZ); (KQZ)
| |
Collapse
|
23
|
Hou C, Zhu M, Sun M, Lin Y. MicroRNA let-7i induced autophagy to protect T cell from apoptosis by targeting IGF1R. Biochem Biophys Res Commun 2014; 453:728-34. [PMID: 25305490 DOI: 10.1016/j.bbrc.2014.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/01/2014] [Indexed: 01/05/2023]
Abstract
MicroRNA let-7i is up-regulated in T cells from patients with Ankylosing Spondylitis (AS). In this study, we investigated the role of let-7i in T cells survival. Our results demonstrated down-regulation of insulin-like growth factor-1 receptor (IGF1R) in T cells from patients with AS. Luciferase reporter assay suggested IGF1R as direct target of let-7i. Overexpression of let-7i in Jurkat cells significantly suppressed IGF1R expression, which mimicked the action of IGF1R siRNA. IGF1R inhibition led to a strinking decrease in phosphorylation of mTOR and Akt, down-regulation of Bcl-2, up-regulation of Bax and cleavage of caspase 3 and PARP. Meanwhile, IGF1R inhibition induced autophagy. Autophagy induced by let-7i overexpression contributed to protect cells from apoptosis. Our data indicated that let-7i might control T cells fates in AS by targeting IGF1R.
Collapse
Affiliation(s)
- Chunfeng Hou
- Department of Rheumatology, Jining First People's Hospital, Jining, Shandong 272111, PR China
| | - Mengzhu Zhu
- Department of Rheumatology, Chinese Medicine Hospital in Linyi City, Linyi, Shandong 276000, PR China.
| | - Min Sun
- Clinic Institute, Jining Medical University, Jining, Shandong 272013, PR China
| | - Yanliang Lin
- Department of Center Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, PR China
| |
Collapse
|
24
|
Saul N, Chakrabarti S, Stürzenbaum SR, Menzel R, Steinberg CEW. Neurotoxic action of microcystin-LR is reflected in the transcriptional stress response of Caenorhabditis elegans. Chem Biol Interact 2014; 223:51-7. [PMID: 25257166 DOI: 10.1016/j.cbi.2014.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Abstract
Cyanobacterial blooms in aquatic environments are frequently characterized by elevated levels of microcystins, a potent hepatotoxin. Here we exposed the nematode Caenorhabditis elegans with environmentally realistic concentrations of MC-LR to explore its non-hepatic toxicity. Lifespan, reproduction and growth assays confirmed the toxic potential of 100μg/L MC-LR even in this liver-lacking invertebrate. Whole-genome microarray analysis revealed that a neuromodulating action was the dominant response in nematodes challenged with 100μg/L MC-LR. Indeed, most of the 201 differentially expressed genes were associated with neurobehavior, neurogenesis, and signaling associated pathways. In addition, a whole-genome miRNA-microarray highlighted that, in particular, members of the let-7 family were differentially regulated. These miRNAs are involved in the developmental timing of cell fates, including neurons, and are probably also part of the stress response system. To conclude, neurological modulation is the main transcriptional stress response in C. elegans exposed to MC-LR.
Collapse
Affiliation(s)
- Nadine Saul
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437 Berlin, Germany.
| | - Shumon Chakrabarti
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437 Berlin, Germany
| | - Stephen R Stürzenbaum
- School of Biomedical Sciences, Analytical and Environmental Sciences Division, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Ralph Menzel
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437 Berlin, Germany
| | - Christian E W Steinberg
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437 Berlin, Germany
| |
Collapse
|