1
|
Dizanzo MP, Bugnon Valdano M, Basukala O, Banks L, Gardiol D. Novel effect of the high risk-HPV E7 CKII phospho-acceptor site on polarity protein expression. BMC Cancer 2022; 22:1015. [PMID: 36153517 PMCID: PMC9509620 DOI: 10.1186/s12885-022-10105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Oncogenic Human Papillomaviruses (HPVs) base their transforming potential on the action of both E6 and E7 viral oncoproteins, which perform cooperative or antagonistic actions and thus interfere with a variety of relevant cellular targets. Among them, the expression of some PDZ-containing polarity proteins, as DLG1 and hScrib, is altered during the HPV life cycle and the consequent malignant transformation. Together with the well-established interference of E6 with PDZ proteins, we have recently shown that E7 viral oncoprotein is also responsible for the changes in abundance and localization of DLG1 observed in HPV-associated lesions. Given that the mechanisms involved remained only partially understood, we here thoroughly analyse the contribution of a crucial E7 post-translational modification: its CKII-dependent phosphorylation. Moreover, we extended our studies to hScrib, in order to investigate possible conserved regulatory events among diverse PDZ targets of HPV. Methods We have acutely analysed the expression of DLG1 and hScrib in restrictive conditions for E7 phosphorylation by CKII in epithelial culture cells by western blot and confocal fluorescence microscopy. We made use of genome-edited HPV-positive cells, specific inhibitors of CKII activity and transient expression of the viral oncoproteins, including a mutant version of E7. Results We here demonstrate that the functional phosphorylation of E7 oncoprotein by the CKII cellular kinase, a key regulatory event for its activities, is also crucial to counteract the E6-mediated degradation of the PDZ-polarity protein DLG1 and to promote its subcellular redistribution. Moreover, we show that the CKII-dependent phosphorylation of E7 is able to control the expression of another PDZ target of HPV: hScrib. Remarkably, we found this is a shared feature among different oncogenic HPV types, suggesting a common path towards viral pathogenesis. Conclusions The present study sheds light into the mechanisms behind the misexpression of PDZ-polarity proteins during HPV infections. Our findings stress the relevance of the CKII-mediated regulation of E7 activities, providing novel insights into the joint action of HPV oncoproteins and further indicating a conserved and most likely crucial mechanism during the viral life cycle and the associated transformation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10105-5.
Collapse
|
2
|
Long T, Burk RD, Chan PKS, Chen Z. Non-human primate papillomavirus E6-mediated p53 degradation reveals ancient evolutionary adaptation of carcinogenic phenotype to host niche. PLoS Pathog 2022; 18:e1010444. [PMID: 35333912 PMCID: PMC8986119 DOI: 10.1371/journal.ppat.1010444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Non-human primates (NHPs) are infected with papillomaviruses (PVs) closely related to their human counterparts, but there are few studies on the carcinogenicity of NHP-PVs. Using an in vitro cell co-transfection assay, we systematically screened the biochemical activity of E6 proteins encoded by macaque PVs for their ability to bind and promote degradation of host p53 proteins. A host species barrier exists between HPV16 and MfPV3 with respect to E6-mediated p53 degradation that is reversed when p53 residue 129 is swapped between human and macaque hosts. Systematic investigation found that E6 proteins encoded by most macaque PV types in the high-risk species α12, but not other Alpha-PV clades or Beta-/Gamma-PV genera, can effectively promote monkey p53 degradation. Interestingly, two macaque PV types (MfPV10 and MmPV1) can simultaneously inhibit the expression of human and monkey p53 proteins, revealing complex cross-host interactions between PV oncogenes and host proteomes. Single point-mutant experiments revealed that E6 residue 47 directly interacts with p53 residue 129 for host-specific degradation. These findings suggest an ancient host niche adaptation toward a carcinogenic phenotype in high-risk primate PV ancestors. Following periods of primate host speciation, a loss-of-function mutation model could be responsible for the formation of a host species barrier to E6-mediated p53 degradation between HPVs and NHP-PVs. Our work lays a genetic and functional basis for PV carcinogenicity, which provides important insights into the origin and evolution of specific pathogens in host pathogenesis.
Collapse
Affiliation(s)
- Teng Long
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Robert D. Burk
- Departments of Pediatrics, Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics, Gynecology and Woman’s Health, Albert Einstein College of Medicine, New York city, New York, United States of America
- * E-mail: (RDB); (ZC)
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail: (RDB); (ZC)
| |
Collapse
|
3
|
Alfaro-Mora R, Zobba R, Antuofermo E, Pietro Burrai G, Solinas R, Dolz G, Pittau M, Alberti A. Genome typing, Histopathology, and Evolution of BPV30, a Novel Xipapillomavirus type isolated from Bovine Papilloma in Costa Rica. Comp Immunol Microbiol Infect Dis 2022; 83:101768. [DOI: 10.1016/j.cimid.2022.101768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
|
4
|
Thomas M, Banks L. The biology of papillomavirus PDZ associations: what do they offer papillomaviruses? Curr Opin Virol 2021; 51:119-126. [PMID: 34655911 DOI: 10.1016/j.coviro.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023]
Abstract
The high-risk α-type papillomaviruses have a C-terminal PDZ-binding motif (PBM) on one of the two major oncoproteins E6 or E7; the vast majority on E6. The PBM is essential for the high-risk HPV life cycle, for episomal maintenance of the virus genome, and for maintaining the mitotic stability of the infected cell. The question is why only these viruses have PBMs - are there specific constraints imposed by the mucosal epithelium in which these viruses replicate? However the low-risk α-HPVs, such as HPV-6 and HPV-11 replicate extremely efficiently without a PBM, while viruses of the alpha8 group, such as HPV-40, replicate well with a very primitive PBM. So what does PDZ-binding capacity contribute to the fitness of the virus?
Collapse
Affiliation(s)
- Miranda Thomas
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy.
| | - Lawrence Banks
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| |
Collapse
|
5
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
6
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
7
|
Structure of High-Risk Papillomavirus 31 E6 Oncogenic Protein and Characterization of E6/E6AP/p53 Complex Formation. J Virol 2020; 95:JVI.00730-20. [PMID: 33115863 DOI: 10.1128/jvi.00730-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
The degradation of p53 is a hallmark of high-risk human papillomaviruses (HPVs) of the alpha genus and HPV-related carcinogenicity. The oncoprotein E6 forms a ternary complex with the E3 ubiquitin ligase E6-associated protein (E6AP) and tumor suppressor protein p53 targeting p53 for ubiquitination. The extent of p53 degradation by different E6 proteins varies greatly, even for the closely related HPV16 and HPV31. HPV16 E6 and HPV31 E6 display high sequence identity (∼67%). We report here, for the first time, the structure of HPV31 E6 bound to the LxxLL motif of E6AP. HPV16 E6 and HPV31 E6 are structurally very similar, in agreement with the high sequence conservation. Both E6 proteins bind E6AP and degrade p53. However, the binding affinities of 31 E6 to the LxxLL motif of E6AP and p53, respectively, are reduced 2-fold and 5.4-fold compared to 16 E6. The affinity of E6-E6AP-p53 ternary complex formation parallels the efficacy of the subsequent reaction, namely, degradation of p53. Therefore, closely related E6 proteins addressing the same cellular targets may still diverge in their binding efficiencies, possibly explaining their different phenotypic or pathological impacts.IMPORTANCE Variations of carcinogenicity of human papillomaviruses are related to variations of the E6 and E7 interactome. While different HPV species and genera are known to target distinct host proteins, the fine differences between E6 and E7 of closely related HPVs, supposed to target the same cellular protein pools, remain to be addressed. We compare the oncogenic E6 proteins of the closely related high-risk HPV31 and HPV16 with regard to their structure and their efficiency of ternary complex formation with their cellular targets p53 and E6AP, which results in p53 degradation. We solved the crystal structure of 31 E6 bound to the E6AP LxxLL motif. HPV16 E6 and 31 E6 structures are highly similar, but a few sequence variations lead to different protein contacts within the ternary complex and, as quantified here, an overall lower binding affinity of 31 E6 than 16 E6. These results align with the observed lower p53 degradation potential of 31 E6.
Collapse
|
8
|
|
9
|
Sarabia-Vega V, Banks L. Acquisition of a phospho-acceptor site enhances HPV E6 PDZ-binding motif functional promiscuity. J Gen Virol 2019; 101:954-962. [PMID: 30810519 DOI: 10.1099/jgv.0.001236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
All cancer-causing human papillomavirus (HPV) E6 oncoproteins have a C-terminal PDZ-binding motif (PBM), which correlates with oncogenic potential. Nonetheless, several HPVs with little or no oncogenic potential also have an E6 PBM, with minor sequence differences affecting PDZ protein selectivity. Furthermore, certain HPV types have a phospho-acceptor site embedded within the PBM. We therefore compared HPV-18, HPV-66 and HPV-40 E6 proteins to examine the possible link between the ability to target multiple PDZ proteins and the acquisition of a phospho-acceptor site. The mutation of essential residues in HPV-18E6 reduces its phosphorylation, and fewer PDZ substrates are bound. In contrast, the generation of consensus phospho-acceptor sites in HPV-66 and HPV-40 E6 PBMs increases the PDZ proteins recognized. Thus, although phosphorylation of the E6 PBM and PDZ protein recognition are mutually exclusive, they are closely linked, with the acquisition of a phospho-acceptor site also contributing to an expansion in the number of PDZ proteins bound.
Collapse
Affiliation(s)
- Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| |
Collapse
|
10
|
Rojas-Cruz A, Reyes-Bermúdez A. Phylogenetic analysis of Alphapapillomavirus based on L1, E6 and E7 regions suggests that carcinogenicity and tissue tropism have appeared multiple times during viral evolution. INFECTION GENETICS AND EVOLUTION 2018; 67:210-221. [PMID: 30458293 DOI: 10.1016/j.meegid.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/18/2022]
Abstract
Members of the Alphapapillomavirus genus are causative agents for cervix cancer and benign lesions in humans. These viruses are classified according to sequence similarities in their L1 region. Yet, viral carcinogenicity has been associated with variations in the proteins encoded by the E6 and E7 genes. In order to relate evolutionary history with origin of carcinogenicity, we performed phylogenetic reconstructions using both nucleotide and predicted amino acid sequences of the L1, E6 and E7 genes. Whilst phylogenetic analysis of L1 reconstructed genus evolutionary history, phylogenies based on E6 and E7 proteins support the idea that mutations at amino acids S/Tx [V/L] (E6) and LxCxE (E7) might be responsible for carcinogenic potential. These findings indicate that virulence within Alphapapillomavirus have appeared multiple times during evolution. Our results reveal that oncogenic potential is not a monophyletic clade-specific adaptation but might be the result of positive selection on random mutations occurring on proteins involved in host infection during viral diversification.
Collapse
Affiliation(s)
- Alexis Rojas-Cruz
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia
| | - Alejandro Reyes-Bermúdez
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia.
| |
Collapse
|
11
|
Thomas M, Banks L. Upsetting the Balance: When Viruses Manipulate Cell Polarity Control. J Mol Biol 2018; 430:3481-3503. [PMID: 29680664 PMCID: PMC7094317 DOI: 10.1016/j.jmb.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/20/2022]
Abstract
The central importance of cell polarity control is emphasized by the frequency with which it is targeted by many diverse viruses. It is clear that in targeting key polarity control proteins, viruses affect not only host cell polarity, but also influence many cellular processes, including transcription, replication, and innate and acquired immunity. Examination of the interactions of different virus proteins with the cell and its polarity controls during the virus life cycles, and in virally-induced cell transformation shows ever more clearly how intimately all cellular processes are linked to the control of cell polarity.
Collapse
|
12
|
Smeele ZE, Burns JM, Van Doorsaler K, Fontenele RS, Waits K, Stainton D, Shero MR, Beltran RS, Kirkham AL, Berngartt R, Kraberger S, Varsani A. Diverse papillomaviruses identified in Weddell seals. J Gen Virol 2018; 99:549-557. [PMID: 29469687 DOI: 10.1099/jgv.0.001028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviridae is a diverse family of circular, double-stranded DNA (dsDNA) viruses that infect a broad range of mammalian, avian and fish hosts. While papillomaviruses have been characterized most extensively in humans, the study of non-human papillomaviruses has contributed greatly to our understanding of their pathogenicity and evolution. Using high-throughput sequencing approaches, we identified 7 novel papillomaviruses from vaginal swabs collected from 81 adult female Weddell seals (Leptonychotes weddellii) in the Ross Sea of Antarctica between 2014-2017. These seven papillomavirus genomes were amplified from seven individual seals, and six of the seven genomes represented novel species with distinct evolutionary lineages. This highlights the diversity of papillomaviruses among the relatively small number of Weddell seal samples tested. Viruses associated with large vertebrates are poorly studied in Antarctica, and this study adds information about papillomaviruses associated with Weddell seals and contributes to our understanding of the evolutionary history of papillomaviruses.
Collapse
Affiliation(s)
- Zoe E Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Koenraad Van Doorsaler
- School of Animal and Comparative Biomedical Sciences, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and Bio5, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Kara Waits
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Michelle R Shero
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Roxanne S Beltran
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, PO Box 756100, Fairbanks, AK 99775, USA
| | - Amy L Kirkham
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Rd Juneau, Alaska 99801, USA
| | | | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.,The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
13
|
The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci (Lond) 2017; 131:2201-2221. [DOI: 10.1042/cs20160786] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
HPVs (human papillomaviruses) infect epithelial cells and their replication cycle is intimately linked to epithelial differentiation. There are over 200 different HPV genotypes identified to date and each displays a strict tissue specificity for infection. HPV infection can result in a range of benign lesions, for example verrucas on the feet, common warts on the hands, or genital warts. HPV infects dividing basal epithelial cells where its dsDNA episomal genome enters the nuclei. Upon basal cell division, an infected daughter cell begins the process of keratinocyte differentiation that triggers a tightly orchestrated pattern of viral gene expression to accomplish a productive infection. A subset of mucosal-infective HPVs, the so-called ‘high risk’ (HR) HPVs, cause cervical disease, categorized as low or high grade. Most individuals will experience transient HR-HPV infection during their lifetime but these infections will not progress to clinically significant cervical disease or cancer because the immune system eventually recognizes and clears the virus. Cancer progression is due to persistent infection with an HR-HPV. HR-HPV infection is the cause of >99.7% cervical cancers in women, and a subset of oropharyngeal cancers, predominantly in men. HPV16 (HR-HPV genotype 16) is the most prevalent worldwide and the major cause of HPV-associated cancers. At the molecular level, cancer progression is due to increased expression of the viral oncoproteins E6 and E7, which activate the cell cycle, inhibit apoptosis, and allow accumulation of DNA damage. This review aims to describe the productive life cycle of HPV and discuss the roles of the viral proteins in HPV replication. Routes to viral persistence and cancer progression are also discussed.
Collapse
|
14
|
Yoshimatsu Y, Nakahara T, Tanaka K, Inagawa Y, Narisawa-Saito M, Yugawa T, Ohno SI, Fujita M, Nakagama H, Kiyono T. Roles of the PDZ-binding motif of HPV 16 E6 protein in oncogenic transformation of human cervical keratinocytes. Cancer Sci 2017; 108:1303-1309. [PMID: 28440909 PMCID: PMC5497797 DOI: 10.1111/cas.13264] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 01/08/2023] Open
Abstract
The high-risk human papillomavirus E6 proteins have been shown to interact with and lead to degradation of PDZ-domain-containing proteins through its carboxy-terminal motif. This PDZ-binding motif plays important roles in transformation of cultured cells and carcinogenesis of E6-transgenic mice. However, its biological effects on the natural host cells have not been elucidated. We have examined its roles in an in vitro carcinogenesis model for cervical cancer, in which E6 and E7 together with activated HRAS (HRASG12V ) can induce tumorigenic transformation of normal human cervical keratinocytes. In this model, E6Δ151 mutant, which is defective in binding to PDZ domains, almost lost tumorigenic ability, whereas E6SAT mutant, which is defective in p53 degradation showed activity close to wild-type E6. Interestingly, we found decreased expression of PAR3 in E6-expressing cells independently of E6AP, which has not been previously recognized. Therefore, we knocked down several PDZ-domain containing proteins including PAR3 in human cervical keratinocytes expressing E7, HRASG12V and E6Δ151 to examine whether depletion of these proteins can restore the tumorigenic ability. Single knockdown of SCRIB, MAGI1 or PAR3 significantly but partially restored the tumorigenic ability. The combinatorial knockdown of SCRIB and MAGI1 cooperatively restored the tumorigenic ability, and additional depletion of PAR3 further enhanced the tumorigenic ability surpassing that induced by wild-type E6. These data highlight the importance of the carboxy-terminal motif of the E6 protein and downregulation of PAR3 in tumorigenic transformation of human cervical keratinocytes.
Collapse
Affiliation(s)
- Yuki Yoshimatsu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomomi Nakahara
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsuyuki Tanaka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Inagawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Mako Narisawa-Saito
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Yugawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Shin-Ichi Ohno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Masatoshi Fujita
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Nakagama
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,National Cancer Center, Tokyo, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
15
|
Thomas M, Myers MP, Massimi P, Guarnaccia C, Banks L. Analysis of Multiple HPV E6 PDZ Interactions Defines Type-Specific PDZ Fingerprints That Predict Oncogenic Potential. PLoS Pathog 2016; 12:e1005766. [PMID: 27483446 PMCID: PMC4970744 DOI: 10.1371/journal.ppat.1005766] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
The high-risk Human Papillomavirus (HPV) E6 oncoproteins are characterised by the presence of a class I PDZ-binding motif (PBM) on their extreme carboxy termini. The PBM is present on the E6 proteins derived from all cancer-causing HPV types, but can also be found on some related non-cancer-causing E6 proteins. We have therefore been interested in investigating the potential functional differences between these different E6 PBMs. Using an unbiased proteomic approach in keratinocytes, we have directly compared the interaction profiles of these different PBMs. This has allowed us to identify the potential PDZ target fingerprints of the E6 PBMs from 7 different cancer-causing HPV types, from 3 HPV types with weak cancer association, and from one benign HPV type that possesses an ancestral PBM. We demonstrate a striking increase in the number of potential PDZ targets bound by each E6 PBM as cancer-causing potential increases, and show that the HPV-16 and HPV-18 PBMs have the most flexibility in their PDZ target selection. Furthermore, the specific interaction with hScrib correlates directly with increased oncogenic potential. In contrast, hDlg is bound equally well by all the HPV E6 PBMs analysed, indicating that this is an evolutionarily conserved interaction, and was most likely one of the original E6 PBM target proteins that was important for the occupation of a potential new niche. Finally, we present evidence that the cell junction components ZO-2 and β-2 syntrophin are novel PDZ domain–containing targets of a subset of high-risk HPV types. The cancer-causing Human Papillomavirus (HPV) E6 oncoproteins have a unique carboxy terminal PDZ binding motif (PBM), which interacts with a number of different cellular PDZ domain-containing substrates. The PBM has important functions in both the viral life cycle and in HPV-induced malignancy. In this study we have used a proteomic approach to compare the ability of multiple HPV E6 oncoproteins to interact with different cellular PDZ proteins. We show a striking increase in the number of PDZ proteins recognised as the oncogenic potential of the individual E6 increases. Furthermore, we define combinations of PDZ proteins that are predictors of oncogenic potential, whilst others represent evolutionarily conserved targets bound across the evolutionary spectrum of low and high-risk PBM-containing E6 proteins. Taken together, these studies shed light on the functional conservation in the E6 PBM across multiple HPV types and support the hypothesis that ancestral PBM evolution originally conferred association with a restricted number of PDZ targets, which has, over time, evolved, to provide increased levels of flexibility and hence increase the number of cellular PDZ partners that can be bound by the cancer-causing E6 oncoproteins.
Collapse
Affiliation(s)
- Miranda Thomas
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology (I.C.G.E.B.), Trieste, Italy
- * E-mail: (MT); (LB)
| | - Michael P. Myers
- Protein Networks, International Centre for Genetic Engineering and Biotechnology (I.C.G.E.B.), Trieste, Italy
| | - Paola Massimi
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology (I.C.G.E.B.), Trieste, Italy
| | - Corrado Guarnaccia
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (I.C.G.E.B.), Trieste, Italy
| | - Lawrence Banks
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology (I.C.G.E.B.), Trieste, Italy
- * E-mail: (MT); (LB)
| |
Collapse
|
16
|
James CD, Roberts S. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait? Pathogens 2016; 5:pathogens5010008. [PMID: 26797638 PMCID: PMC4810129 DOI: 10.3390/pathogens5010008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.
Collapse
Affiliation(s)
- Claire D James
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK.
- Present address; Virginia Commonwealth University, School of Dentistry, W. Baxter Perkinson Jr. Building, 521 North 11th Street, P.O. Box 980566, Richmond, VA 23298-0566, USA.
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK.
| |
Collapse
|
17
|
Marín HM, Torres C, Deluca GD, Mbayed VA. Human papillomavirus detection in Corrientes, Argentina: High prevalence of type 58 and its phylodynamics. Rev Argent Microbiol 2015; 47:302-11. [DOI: 10.1016/j.ram.2015.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 10/22/2022] Open
|
18
|
Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S, Pim D, Szalmas A, Thatte J, Thomas M, Tomaić V, Banks L. The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy. Viruses 2015; 7:3530-51. [PMID: 26147797 PMCID: PMC4517114 DOI: 10.3390/v7072785] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer-causing HPV E6 oncoproteins are characterized by the presence of a PDZ binding motif (PBM) at their extreme carboxy terminus. It was long thought that this region of E6 had a sole function to confer interaction with a defined set of cellular substrates. However, more recent studies have shown that the E6 PBM has a complex pattern of regulation, whereby phosphorylation within the PBM can regulate interaction with two classes of cellular proteins: those containing PDZ domains and the members of the 14-3-3 family of proteins. In this review, we explore the roles that the PBM and its ligands play in the virus life cycle, and subsequently how these can inadvertently contribute towards the development of malignancy. We also explore how subtle alterations in cellular signal transduction pathways might result in aberrant E6 phosphorylation, which in turn might contribute towards disease progression.
Collapse
Affiliation(s)
- Ketaki Ganti
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Justyna Broniarczyk
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Wiem Manoubi
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Paola Massimi
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Suruchi Mittal
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - David Pim
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Anita Szalmas
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Jayashree Thatte
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Miranda Thomas
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Vjekoslav Tomaić
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Lawrence Banks
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| |
Collapse
|