2
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic. Sci Rep 2018; 8:17448. [PMID: 30487524 PMCID: PMC6262010 DOI: 10.1038/s41598-018-35770-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/08/2018] [Indexed: 01/05/2023] Open
Abstract
Natural and urban forests worldwide are increasingly threatened by global change resulting from human-mediated factors, including invasions by lethal exotic pathogens. Ash dieback (ADB), incited by the alien invasive fungus Hymenoscyphus fraxineus, has caused large-scale population decline of European ash (Fraxinus excelsior) across Europe, and is threatening to functionally extirpate this tree species. Genetically controlled host resistance is a key element to ensure European ash survival and to restore this keystone species where it has been decimated. We know that a low proportion of the natural population of European ash expresses heritable, quantitative resistance that is stable across environments. To exploit this resource for breeding and restoration efforts, tools that allow for effective and efficient, rapid identification and deployment of superior genotypes are now sorely needed. Here we show that Fourier-transform infrared (FT-IR) spectroscopy of phenolic extracts from uninfected bark tissue, coupled with a model based on soft independent modelling of class analogy (SIMCA), can robustly discriminate between ADB-resistant and susceptible European ash. The model was validated with populations of European ash grown across six European countries. Our work demonstrates that this approach can efficiently advance the effort to save such fundamental forest resource in Europe and elsewhere.
Collapse
|
5
|
McMullan M, Rafiqi M, Kaithakottil G, Clavijo BJ, Bilham L, Orton E, Percival-Alwyn L, Ward BJ, Edwards A, Saunders DGO, Garcia Accinelli G, Wright J, Verweij W, Koutsovoulos G, Yoshida K, Hosoya T, Williamson L, Jennings P, Ioos R, Husson C, Hietala AM, Vivian-Smith A, Solheim H, MaClean D, Fosker C, Hall N, Brown JKM, Swarbreck D, Blaxter M, Downie JA, Clark MD. The ash dieback invasion of Europe was founded by two genetically divergent individuals. Nat Ecol Evol 2018; 2:1000-1008. [PMID: 29686237 PMCID: PMC5969572 DOI: 10.1038/s41559-018-0548-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 03/27/2018] [Indexed: 11/22/2022]
Abstract
Accelerating international trade and climate change make pathogen spread an increasing concern. Hymenoscyphus fraxineus, the causal agent of ash dieback, is a fungal pathogen that has been moving across continents and hosts from Asian to European ash. Most European common ash trees (Fraxinus excelsior) are highly susceptible to H. fraxineus, although a minority (~5%) have partial resistance to dieback. Here, we assemble and annotate a H. fraxineus draft genome which approaches chromosome scale. Pathogen genetic diversity across Europe and in Japan, reveals a strong bottleneck in Europe, though a signal of adaptive diversity remains in key host interaction genes. We find that the European population was founded by two divergent haploid individuals. Divergence between these haplotypes represents the ancestral polymorphism within a large source population. Subsequent introduction from this source would greatly increase adaptive potential of the pathogen. Thus, further introgression of H. fraxineus into Europe represents a potential threat and Europe-wide biological security measures are needed to manage this disease.
Collapse
Affiliation(s)
- Mark McMullan
- The Earlham Institute, Norwich Research Park, Norwich, UK.
| | | | | | | | | | | | | | - Ben J Ward
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Anne Edwards
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | - Walter Verweij
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Kentaro Yoshida
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Graduate school of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Tsuyoshi Hosoya
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | | | | | - Renaud Ioos
- ANSES Laboratoire de la Santé des Végétaux, Malzéville, France
| | | | - Ari M Hietala
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | | | - Dan MaClean
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Mark Blaxter
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.,Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Matthew D Clark
- The Earlham Institute, Norwich Research Park, Norwich, UK. .,Department of Life Sciences, Natural History Museum, London, UK.
| |
Collapse
|