1
|
Ali S, Stavropoulos A, Jenkins B, Graves S, Ahmadi A, Marzbanrad V, Che G, Cheng J, Tan H, Wei X, Egan S, Ingalls B, Neufeld JD, Eckhard U, Charles TC, Doxey AC. Comparative proteomics of biofilm development in Pseudoalteromonas tunicata discovers a distinct family of Ca 2+-dependent adhesins. mBio 2025:e0106925. [PMID: 40396756 DOI: 10.1128/mbio.01069-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
The marine bacterium, Pseudoalteromonas tunicata, is a useful model for studying biofilm development due to its ability to colonize and form biofilms on a variety of marine and eukaryotic host-associated surfaces. However, the pathways responsible for P. tunicata biofilm formation are not fully understood, in part due to a lack of functional information for a large proportion of its proteome. We used comparative shotgun proteomics to explore P. tunicata biofilm development from the planktonic phase throughout early, middle, and late biofilm stages. A total of 248 biofilm-associated proteins were identified, including many hypothetical proteins, as well as previously known P. tunicata biofilm-related proteins, such as the autocidal enzyme AlpP, violacein proteins, S-layer protein SLR4, and various pili proteins. We further investigated the top identified biofilm-associated protein, a previously uncharacterized 1,600-amino acid protein (EAR30327), which we designate as "BapP." Based on AlphaFold modeling and genomic context analysis, we predicted BapP as a distinct Ca2+-dependent biofilm adhesin. Consistent with this prediction, a ΔbapP knockout mutant was defective in forming both pellicle- and surface-associated biofilms and rescued by re-insertion of bapP into the genome. Similar to the mechanisms of RTX Bap-like adhesins, BapP-mediated biofilm formation was influenced by Ca2+ levels, and BapP is potentially exported by a Type 1 secretion system. Ultimately, our work not only provides a useful proteomic data set for studying biofilm development in an ecologically relevant organism but also adds to our knowledge of bacterial adhesin diversity, emphasizing Bap-like proteins as widespread determinants of biofilm formation in bacteria. IMPORTANCE Understanding how bacteria form biofilms is essential because biofilms play a crucial role in bacterial survival and interaction with their environments. The marine bacterium Pseudoalteromonas tunicata is a valuable model for studying biofilm formation, as it colonizes diverse marine surfaces and host organisms. By identifying proteins involved in biofilm development, our study sheds light on the specific proteins that help P. tunicata transition from a free-swimming state to a stable biofilm. This work highlights the role of a large, calcium-dependent protein, BapP, which we found to be essential for biofilm stability and structure. This protein and hundreds of others identified provide new insights into bacterial adhesion mechanisms, expanding our understanding of biofilm formation in marine environments and potentially informing broader studies on biofilm-related processes in other bacteria.
Collapse
Affiliation(s)
- Sura Ali
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Alexander Stavropoulos
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin Jenkins
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Sadie Graves
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Atiyeh Ahmadi
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Vania Marzbanrad
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Geoffrey Che
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Jiujun Cheng
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Huagang Tan
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Xin Wei
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Suhelen Egan
- The University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brian Ingalls
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Josh D Neufeld
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Department of Molecular and Structural Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Catalonia, Spain
| | - Trevor C Charles
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew C Doxey
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Sleutel M, Sonani RR, Miller JG, Wang F, Socorro AG, Chen Y, Martin R, Demeler B, Rudolph MJ, Alva V, Remaut H, Egelman EH, Conticello VP. Donor Strand Complementation and Calcium Ion Coordination Drive the Chaperone-free Polymerization of Archaeal Cannulae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630787. [PMID: 39803462 PMCID: PMC11722229 DOI: 10.1101/2024.12.30.630787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon Pyrodictium abyssi during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of ex vivo cannulae and of in vitro protein assemblies derived from recombinant cannula-like proteins. Three-dimensional reconstructions of P. abyssi cannulae revealed that the structural interactions between protomers in the native and recombinant filaments were based on donor strand complementation, a form of non-covalent polymerization in which a donor β-strand from one subunit is inserted into an acceptor groove in a β-sheet of a neighboring subunit. Donor strand complementation in cannulae is reinforced through calcium ion coordination at the interfaces between structural subunits in the respective assemblies. While donor strand complementation occurs during the assembly of chaperone-usher pili, this process requires the participation of accessory proteins that are localized in the outer membrane. In contrast, we demonstrate that calcium ions can induce assembly of cannulae in the absence of other co-factors. Crystallographic analysis of a recombinant cannula-like protein monomer provided evidence that calcium ion binding primes the precursor for donor strand invasion through unblocking of the acceptor groove. Bioinformatic analysis suggested that structurally homologous cannula-like proteins occurred within the genomes of other hyperthermophilic archaea and were encompassed within the TasA superfamily of biomatrix proteins. CryoEM structural analyses of tubular filaments derived from in vitro assembly of a recombinant cannula-like protein from an uncultured Hyperthermus species revealed a common mode of assembly to the Pyrodictium cannulae, in which donor strand complementation and calcium ion binding stabilized longitudinal and lateral assembly in tubular 2D sheets.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jessalyn G Miller
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
- Biochemistry and Molecular Genetics Department, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | | | - Yang Chen
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Reece Martin
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Michael J Rudolph
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology Tübingen, Tübingen 72076, Germany
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Vincent P Conticello
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- The Robert P. Apkarian Integrated Electron Microscopy Core (IEMC), Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Hodges FJ, Torres VVL, Cunningham AF, Henderson IR, Icke C. Redefining the bacterial Type I protein secretion system. Adv Microb Physiol 2023; 82:155-204. [PMID: 36948654 DOI: 10.1016/bs.ampbs.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I secretion systems (T1SS) are versatile molecular machines for protein transport across the Gram-negative cell envelope. The archetypal Type I system mediates secretion of the Escherichia coli hemolysin, HlyA. This system has remained the pre-eminent model of T1SS research since its discovery. The classic description of a T1SS is composed of three proteins: an inner membrane ABC transporter, a periplasmic adaptor protein and an outer membrane factor. According to this model, these components assemble to form a continuous channel across the cell envelope, an unfolded substrate molecule is then transported in a one-step mechanism, directly from the cytosol to the extracellular milieu. However, this model does not encapsulate the diversity of T1SS that have been characterized to date. In this review, we provide an updated definition of a T1SS, and propose the subdivision of this system into five subgroups. These subgroups are categorized as T1SSa for RTX proteins, T1SSb for non-RTX Ca2+-binding proteins, T1SSc for non-RTX proteins, T1SSd for class II microcins, and T1SSe for lipoprotein secretion. Although often overlooked in the literature, these alternative mechanisms of Type I protein secretion offer many avenues for biotechnological discovery and application.
Collapse
Affiliation(s)
- Freya J Hodges
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Architecture of cell-cell junctions in situ reveals a mechanism for bacterial biofilm inhibition. Proc Natl Acad Sci U S A 2021; 118:2109940118. [PMID: 34321357 PMCID: PMC8346871 DOI: 10.1073/pnas.2109940118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many bacteria, including the major human pathogen Pseudomonas aeruginosa, are naturally found in multicellular, antibiotic-tolerant biofilm communities, in which cells are embedded in an extracellular matrix of polymeric molecules. Cell-cell interactions within P. aeruginosa biofilms are mediated by CdrA, a large, membrane-associated adhesin present in the extracellular matrix of biofilms, regulated by the cytoplasmic concentration of cyclic diguanylate. Here, using electron cryotomography of focused ion beam-milled specimens, we report the architecture of CdrA molecules in the extracellular matrix of P. aeruginosa biofilms at intact cell-cell junctions. Combining our in situ observations at cell-cell junctions with biochemistry, native mass spectrometry, and cellular imaging, we demonstrate that CdrA forms an extended structure that projects from the outer membrane to tether cells together via polysaccharide binding partners. We go on to show the functional importance of CdrA using custom single-domain antibody (nanobody) binders. Nanobodies targeting the tip of functional cell-surface CdrA molecules could be used to inhibit bacterial biofilm formation or disrupt preexisting biofilms in conjunction with bactericidal antibiotics. These results reveal a functional mechanism for cell-cell interactions within bacterial biofilms and highlight the promise of using inhibitors targeting biofilm cell-cell junctions to prevent or treat problematic, chronic bacterial infections.
Collapse
|
5
|
Growth by Insertion: The Family of Bacterial DDxP Proteins. Int J Mol Sci 2020; 21:ijms21239184. [PMID: 33276454 PMCID: PMC7730722 DOI: 10.3390/ijms21239184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
We have identified a variety of proteins in species of the Legionella, Aeromonas, Pseudomonas, Vibrio, Nitrosomonas, Nitrosospira, Variovorax, Halomonas, and Rhizobia genera, which feature repetitive modules of different length and composition, invariably ending at the COOH side with Asp-Asp-x-Pro (DDxP) motifs. DDxP proteins range in size from 900 to 6200 aa (amino acids), and contain 1 to 5 different module types, present in one or multiple copies. We hypothesize that DDxP proteins were modeled by the action of specific endonucleases inserting DNA segments into genes encoding DDxP motifs. Target site duplications (TSDs) formed upon repair of staggered ends generated by endonuclease cleavage would explain the DDxP motifs at repeat ends. TSDs acted eventually as targets for the insertion of more modules of the same or different types. Repeat clusters plausibly resulted from amplification of both repeat and flanking TSDs. The proposed growth shown by the insertion model is supported by the identification of homologous proteins lacking repeats in Pseudomonas and Rhizobium. The 85 DDxP repeats identified in this work vary in length, and can be sorted into short (136-215 aa) and long (243-304 aa) types. Conserved Asp-Gly-Asp-Gly-Asp motifs are located 11-19 aa from the terminal DDxP motifs in all repeats, and far upstream in most long repeats.
Collapse
|
6
|
Vance TDR, Ye Q, Conroy B, Davies PL. Essential role of calcium in extending RTX adhesins to their target. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100036. [PMID: 32984811 PMCID: PMC7493085 DOI: 10.1016/j.yjsbx.2020.100036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022]
Abstract
Elongated beta-sandwich repeats are a major part of bacterial RTX adhesins. The repeats are arranged in tandem to extend away from the bacterial surface. Calcium ions are coordinated in the linkers between repeats to stiffen the protein. Rigidification of the tandem repeats further helps extension of the adhesin. The repeats differ greatly between species, but all have Ca2+ in their linkers.
RTX adhesins are long, multi-domain proteins present on the outer membrane of many Gram-negative bacteria. From this vantage point, adhesins use their distal ligand-binding domains for surface attachment leading to biofilm formation. To expand the reach of the ligand-binding domains, RTX adhesins maintain a central extender region of multiple tandem repeats, which makes up most of the proteins’ large molecular weight. Alignments of the 10-15-kDa extender domains show low sequence identity between adhesins. Here we have produced and structurally characterized protein constructs of four tandem repeats (tetra-tandemers) from two different RTX adhesins. In comparing the tetra-tandemers to each other and already solved structures from Marinomonas primoryensis and Salmonella enterica, the extender domains fold as diverse beta-sandwich structures with widely differing calcium contents. However, all the tetra-tandemers have at least one calcium ion coordinated in the linker region between beta-sandwich domains whose role appears to be the rigidification of the extender region to help the adhesin extend its reach.
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| | - Qilu Ye
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| | - Brigid Conroy
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| |
Collapse
|
7
|
Rivas-Pardo JA, Li Y, Mártonfalvi Z, Tapia-Rojo R, Unger A, Fernández-Trasancos Á, Herrero-Galán E, Velázquez-Carreras D, Fernández JM, Linke WA, Alegre-Cebollada J. A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nat Commun 2020; 11:2060. [PMID: 32345978 PMCID: PMC7189229 DOI: 10.1038/s41467-020-15465-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Single-molecule methods using recombinant proteins have generated transformative hypotheses on how mechanical forces are generated and sensed in biological tissues. However, testing these mechanical hypotheses on proteins in their natural environment remains inaccesible to conventional tools. To address this limitation, here we demonstrate a mouse model carrying a HaloTag-TEV insertion in the protein titin, the main determinant of myocyte stiffness. Using our system, we specifically sever titin by digestion with TEV protease, and find that the response of muscle fibers to length changes requires mechanical transduction through titin's intact polypeptide chain. In addition, HaloTag-based covalent tethering enables examination of titin dynamics under force using magnetic tweezers. At pulling forces < 10 pN, titin domains are recruited to the unfolded state, and produce 41.5 zJ mechanical work during refolding. Insertion of the HaloTag-TEV cassette in mechanical proteins opens opportunities to explore the molecular basis of cellular force generation, mechanosensing and mechanotransduction.
Collapse
Affiliation(s)
- Jaime Andrés Rivas-Pardo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Center for Genomics and Bioinformatics, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Yong Li
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Andreas Unger
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | | | | | | | - Julio M Fernández
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany.
| | | |
Collapse
|
8
|
Klingl S, Kordes S, Schmid B, Gerlach RG, Hensel M, Muller YA. Recombinant protein production and purification of SiiD, SiiE and SiiF - Components of the SPI4-encoded type I secretion system from Salmonella Typhimurium. Protein Expr Purif 2020; 172:105632. [PMID: 32251835 DOI: 10.1016/j.pep.2020.105632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
In humans, Salmonella enterica infections are responsible for a plethora of medical conditions. These include intestinal inflammation and typhoid fever. The initial contact between Salmonella and polarized epithelial cells is established by the SPI4-encoded type I secretion system (T1SS), which secretes SiiE, a giant non-fimbrial adhesin. We have recombinantly produced various domains of this T1SS from Salmonella enterica serovar Typhimurium in Escherichia coli for further experimental characterization. We purified three variants of SiiD, the periplasmic adapter protein spanning the space between the inner and outer membrane, two variants of the SiiE N-terminal region and the N-terminal domain of the SiiF ATP-binding cassette (ABC) transporter. In all three proteins, at least one variant yielded high amounts of pure soluble protein. Secondary structure content and cooperative unfolding were investigated by circular dichroism (CD) spectroscopy. Secondary structure contents were in good agreement with estimates derived from SiiD and SiiF homology models or, in case of the SiiE N-terminal region, a secondary structure prediction. For one SiiD variant, protein crystals could be obtained that diffracted X-rays to approximately 4 Å resolution.
Collapse
Affiliation(s)
- Stefan Klingl
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91052, Erlangen, Germany
| | - Sina Kordes
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91052, Erlangen, Germany
| | - Benedikt Schmid
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91052, Erlangen, Germany
| | | | - Michael Hensel
- Abt. Mikrobiologie and CellNanOs, Universität Osnabrück, Osnabrück, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, D-91052, Erlangen, Germany.
| |
Collapse
|
9
|
Kirchweger P, Weiler S, Egerer‐Sieber C, Blasl A, Hoffmann S, Schmidt C, Sander N, Merker D, Gerlach RG, Hensel M, Muller YA. Structural and functional characterization of SiiA, an auxiliary protein from the SPI4‐encoded type 1 secretion system from
Salmonella enterica. Mol Microbiol 2019; 112:1403-1422. [DOI: 10.1111/mmi.14368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peter Kirchweger
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | - Sigrid Weiler
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | - Claudia Egerer‐Sieber
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | - Anna‐Theresa Blasl
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | | | | | - Nathalie Sander
- Abt. Mikrobiologie and CellNanOs Universität Osnabrück Osnabrück Germany
| | - Dorothee Merker
- Abt. Mikrobiologie and CellNanOs Universität Osnabrück Osnabrück Germany
| | | | - Michael Hensel
- Abt. Mikrobiologie and CellNanOs Universität Osnabrück Osnabrück Germany
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| |
Collapse
|
10
|
Schmitt C, Bafna JA, Schmid B, Klingl S, Baier S, Hemmis B, Wagner R, Winterhalter M, Voll LM. Manipulation of charge distribution in the arginine and glutamate clusters of the OmpG pore alters sugar specificity and ion selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183021. [PMID: 31306626 DOI: 10.1016/j.bbamem.2019.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023]
Abstract
OmpG is a general diffusion pore in the E. coli outer membrane with a molecular architecture comprising a 14-stranded β-barrel scaffold and unique structural features. In contrast to other non-specific porins, OmpG lacks a central constriction zone and has an exceptionally wide pore diameter of about 13 Å. The equatorial plane of OmpG harbors an annulus of four alternating basic and acidic patches whose function is only poorly characterized. We have investigated the role of charge distribution for ion selectivity and sugar transport with the help of OmpG variants mutated in the annulus. Substituting the glutamate residues of the annulus for histidines or alanines led to a strong reduction in cation selectivity. Replacement of the glutamates in the annulus by histidine residues also disfavored the passage of pentoses and hexoses relative to disaccharides. Our results demonstrate that despite the wide pore diameter, an annulus only consisting of two opposing basic patches confers reduced cation and monosaccharide transport compared to OmpG wild type. Furthermore, randomization of charged residues in the annulus had the potential to abolish pH-dependency of sugar transport. Our results indicate that E15, E31, R92, R111 and R211 in the annulus form electrostatic interactions with R228, E229 and D232 in loop L6 that influence pH-dependency of sugar transport.
Collapse
Affiliation(s)
- Christine Schmitt
- Division of Biochemistry and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany; Department Biology, Division of Plant Physiology, Philipps-University Marburg, D-35043 Marburg, Germany.
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719 Bremen, Germany.
| | - Benedikt Schmid
- Division of Biotechnology and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
| | - Stefan Klingl
- Division of Biotechnology and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
| | - Steffen Baier
- Division of Biochemistry and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Birgit Hemmis
- Department of Biology and Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany
| | - Richard Wagner
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719 Bremen, Germany; Department of Biology and Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany.
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719 Bremen, Germany.
| | - Lars M Voll
- Division of Biochemistry and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany; Department Biology, Division of Plant Physiology, Philipps-University Marburg, D-35043 Marburg, Germany.
| |
Collapse
|
11
|
Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB, Schmitt L. Type I Secretion Systems-One Mechanism for All? Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0003-2018. [PMID: 30848237 PMCID: PMC11588160 DOI: 10.1128/microbiolspec.psib-0003-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Type I secretion systems (T1SS) are widespread in Gram-negative bacteria, especially in pathogenic bacteria, and they secrete adhesins, iron-scavenger proteins, lipases, proteases, or pore-forming toxins in the unfolded state in one step across two membranes without any periplasmic intermediate into the extracellular space. The substrates of T1SS are in general characterized by a C-terminal secretion sequence and nonapeptide repeats, so-called GG repeats, located N terminal to the secretion sequence. These GG repeats bind Ca2+ ions in the extracellular space, which triggers folding of the entire protein. Here we summarize our current knowledge of how Gram-negative bacteria secrete these substrates, which can possess a molecular mass of up to 1,500 kDa. We also describe recent findings that demonstrate that the absence of periplasmic intermediates, the "classic" mode of action, does not hold true for all T1SS and that we are beginning to realize modifications of a common theme.
Collapse
Affiliation(s)
- Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - I Barry Holland
- Institute of Genetics and Microbiology, University of Paris-Sud, Orsay, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Wang W, Baloch Z, Zou M, Dong Y, Peng Z, Hu Y, Xu J, Yasmeen N, Li F, Fanning S. Complete Genomic Analysis of a Salmonella enterica Serovar Typhimurium Isolate Cultured From Ready-to-Eat Pork in China Carrying One Large Plasmid Containing mcr-1. Front Microbiol 2018; 9:616. [PMID: 29755416 PMCID: PMC5934421 DOI: 10.3389/fmicb.2018.00616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
One mcr-1-carrying ST34-type Salmonella Typhimurium WW012 was cultured from 3,200 ready-to-eat (RTE) pork samples in 2014 in China. Broth dilution method was applied to obtain the antimicrobial susceptibility of Salmonella Typhimurium WW012. Broth matting assays were carried out to detect transferability of this phenotype and whole-genome sequencing was performed to analyze its genomic characteristic. Thirty out of 3,200 RTE samples were positive for Salmonella and the three most frequent serotypes were identified as S. Derby (n = 8), S. Typhimurium (n = 6), and S. Enteritidis (n = 6). One S. Typhimurium isolate (S. Typhimurium WW012) cultured from RTE prepared pork was found to contain the mcr-1 gene. S. Typhimurium WW012 expressed a level of high resistance to seven different antimicrobial compounds in addition to colistin (MIC = 8 mg/L). A single plasmid, pWW012 (151,609-bp) was identified and found to be of an IncHI2/HI2A type that encoded a mcr-1 gene along with six additional antimicrobial resistance genes. Plasmid pWW012 contained an IS30-mcr-1-orf-orf-IS30 composite transposon that can be successfully transferred to Escherichia coli J53. When assessed further, the latter demonstrated considerable similarity to three plasmids pHYEC7-mcr-1, pSCC4, and pHNSHP45-2, respectively. Furthermore, plasmid pWW012 also contained a multidrug resistance (MDR) genetic structure IS26-aadA2-cmlA2-aadA1-IS406-sul3-IS26-dfrA12-aadA2-IS26, which showed high similarity to two plasmids, pHNLDF400 and pHNSHP45-2, respectively. Moreover, genes mapping to the chromosome (4,991,167-bp) were found to carry 28 mutations, related to two component regulatory systems (pmrAB, phoPQ) leading to modifications of lipid A component of the lipopolysaccharide structure. Additionally, one mutation (D87N) in the quinolone resistance determining region (QRDR) gene of gyrA was identified in this mcr-1 harboring S. Typhimurium. In addition, various virulence factors and heavy metal resistance-encoding genes were also identified on the genome of S. Typhimurium WW012. This is the first report of the complete nucleotide sequence of mcr-1-carrying MDR S. Typhimurium strain from RTE pork in China.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingyuan Zou
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Yinping Dong
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zixin Peng
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yujie Hu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Nafeesa Yasmeen
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Ireland
| |
Collapse
|
13
|
Guo S, Langelaan DN, Phippen SW, Smith SP, Voets IK, Davies PL. Conserved structural features anchor biofilm-associated RTX-adhesins to the outer membrane of bacteria. FEBS J 2018; 285:1812-1826. [PMID: 29575515 DOI: 10.1111/febs.14441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/05/2018] [Accepted: 03/19/2018] [Indexed: 11/30/2022]
Abstract
Repeats-in-toxin (RTX) adhesins are present in many Gram-negative bacteria to facilitate biofilm formation. Previously, we reported that the 1.5-MDa RTX adhesin (MpIBP) from the Antarctic bacterium, Marinomonas primoryensis, is tethered to the bacterial cell surface via its N-terminal Region I (RI). Here, we show the detailed structural features of RI. It has an N-terminal periplasmic retention domain (RIN), a central domain (RIM) that can insert into the β-barrel of an outer-membrane pore protein during MpIBP secretion, and three extracellular domains at its C terminus (RIC) that transition the protein into the extender region (RII). RIN has a novel β-sandwich fold with a similar shape to βγ-crystallins and tryptophan RNA attenuation proteins. Because RIM undergoes fast and extensive degradation in vitro, its narrow cylindrical shape was rapidly measured by small-angle X-ray scattering before proteolysis could occur. The crystal structure of RIC comprises three tandem β-sandwich domains similar to those in RII, but increasing in their hydrophobicity with proximity to the outer membrane. In addition, the key Ca2+ ion that rigidifies the linkers between RII domains is not present between the first two of these RIC domains. This more flexible RI linker near the cell surface can act as a 'pivot' to help the 0.6-μm-long MpIBP sweep over larger volumes to find its binding partners. Since the physical features of RI are well conserved in the RTX adhesins of many Gram-negative bacteria, our detailed structural and bioinformatic analyses serve as a model for investigating the surface retention of biofilm-forming bacteria, including human pathogens.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Protein Function Discovery Group, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, the Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, the Netherlands
| | - David N Langelaan
- Protein Function Discovery Group, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sean W Phippen
- Protein Function Discovery Group, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Steven P Smith
- Protein Function Discovery Group, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Ilja K Voets
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, the Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, the Netherlands
| | - Peter L Davies
- Protein Function Discovery Group, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|