1
|
Ruf A, Thieron H, Nasfi S, Lederer B, Fricke S, Adeshara T, Postma J, Blumenkamp P, Kwon S, Brinkrolf K, Feldbrügge M, Goesmann A, Kehr J, Steinbrenner J, Šečić E, Göhre V, Weiberg A, Kogel K, Panstruga R, Robatzek S. Broad-scale phenotyping in Arabidopsis reveals varied involvement of RNA interference across diverse plant-microbe interactions. PLANT DIRECT 2024; 8:e70017. [PMID: 39553386 PMCID: PMC11565445 DOI: 10.1002/pld3.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
RNA interference (RNAi) is a crucial mechanism in immunity against infectious microbes through the action of DICER-LIKE (DCL) and ARGONAUTE (AGO) proteins. In the case of the taxonomically diverse fungal pathogen Botrytis cinerea and the oomycete Hyaloperonospora arabidopsidis, plant DCL and AGO proteins have proven roles as negative regulators of immunity, suggesting functional specialization of these proteins. To address this aspect in a broader taxonomic context, we characterized the colonization pattern of an informative set of DCL and AGO loss-of-function mutants in Arabidopsis thaliana upon infection with a panel of pathogenic microbes with different lifestyles, and a fungal mutualist. Our results revealed that, depending on the interacting pathogen, AGO1 acts as a positive or negative regulator of immunity, while AGO4 functions as a positive regulator. Additionally, AGO2 and AGO10 positively modulated the colonization by a fungal mutualist. Therefore, analyzing the role of RNAi across a broader range of plant-microbe interactions has identified previously unknown functions for AGO proteins. For some pathogen interactions, however, all tested mutants exhibited wild-type-like infection phenotypes, suggesting that the roles of AGO and DCL proteins in these interactions may be more complex to elucidate.
Collapse
Affiliation(s)
| | - Hannah Thieron
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Sabrine Nasfi
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
| | | | - Sebastian Fricke
- Institute of Plant Science and MicrobiologyMolecular Plant Genetics, UniversitätHamburgGermany
| | - Trusha Adeshara
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Johannes Postma
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Patrick Blumenkamp
- Bioinformatics and Systems BiologyJustus Liebig University GiessenGermany
| | - Seomun Kwon
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Karina Brinkrolf
- Bioinformatics and Systems BiologyJustus Liebig University GiessenGermany
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Alexander Goesmann
- Bioinformatics and Systems BiologyJustus Liebig University GiessenGermany
| | - Julia Kehr
- Institute of Plant Science and MicrobiologyMolecular Plant Genetics, UniversitätHamburgGermany
| | - Jens Steinbrenner
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
| | - Ena Šečić
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
| | - Vera Göhre
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
- Hochschule DarmstadtDarmstadtGermany
| | | | - Karl‐Heinz Kogel
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
- Institut de biologie moléculaire des plantes, CNRSUniversité de StrasbourgStrasbourgFrance
| | - Ralph Panstruga
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | | | | |
Collapse
|
2
|
Hornstein ED, Charles M, Franklin M, Edwards B, Vintila S, Kleiner M, Sederoff H. IPD3, a master regulator of arbuscular mycorrhizal symbiosis, affects genes for immunity and metabolism of non-host Arabidopsis when restored long after its evolutionary loss. PLANT MOLECULAR BIOLOGY 2024; 114:21. [PMID: 38368585 PMCID: PMC10874911 DOI: 10.1007/s11103-024-01422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.
Collapse
Affiliation(s)
- Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Megan Franklin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Binci F, Offer E, Crosino A, Sciascia I, Kleine-Vehn J, Genre A, Giovannetti M, Navazio L. Spatially and temporally distinct Ca2+ changes in Lotus japonicus roots orient fungal-triggered signalling pathways towards symbiosis or immunity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:605-619. [PMID: 37712520 DOI: 10.1093/jxb/erad360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Plants activate an immune or symbiotic response depending on the detection of distinct signals from root-interacting microbes. Both signalling cascades involve Ca2+ as a central mediator of early signal transduction. In this study, we combined aequorin- and cameleon-based methods to dissect the changes in cytosolic and nuclear Ca2+ concentration caused by different chitin-derived fungal elicitors in Lotus japonicus roots. Our quantitative analyses highlighted the dual character of the evoked Ca2+ responses taking advantage of the comparison between different genetic backgrounds: an initial Ca2+ influx, dependent on the LysM receptor CERK6 and independent of the common symbiotic signalling pathway (CSSP), is followed by a second CSSP-dependent and CERK6-independent phase, that corresponds to the well-known perinuclear/nuclear Ca2+ spiking. We show that the expression of immunity marker genes correlates with the amplitude of the first Ca2+ change, depends on elicitor concentration, and is controlled by Ca2+ storage in the vacuole. Our findings provide an insight into the Ca2+-mediated signalling mechanisms discriminating plant immunity- and symbiosis-related pathways in the context of their simultaneous activation by single fungal elicitors.
Collapse
Affiliation(s)
- Filippo Binci
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Elisabetta Offer
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Andrea Crosino
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Jürgen Kleine-Vehn
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
- Institute of Biology II, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Marco Giovannetti
- Department of Biology, University of Padova, 35131 Padova, Italy
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
4
|
Hornstein ED, Charles M, Franklin M, Edwards B, Vintila S, Kleiner M, Sederoff H. Re-engineering a lost trait: IPD3, a master regulator of arbuscular mycorrhizal symbiosis, affects genes for immunity and metabolism of non-host Arabidopsis when restored long after its evolutionary loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531368. [PMID: 36945518 PMCID: PMC10028889 DOI: 10.1101/2023.03.06.531368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore why an apparently beneficial trait would be repeatedly lost, we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state which partially mimics AMF exposure in non-inoculated plants. Our results indicate that despite the long interval since loss of AM and IPD3 in Arabidopsis, molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.
Collapse
Affiliation(s)
- Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Megan Franklin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Garcia-Ruiz H, Szurek B, Van den Ackerveken G. Stop helping pathogens: engineering plant susceptibility genes for durable resistance. Curr Opin Biotechnol 2021; 70:187-195. [PMID: 34153774 PMCID: PMC8878094 DOI: 10.1016/j.copbio.2021.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
Alternatives to protect crops against diseases are desperately needed to secure world food production and make agriculture more sustainable. Genetic resistance to pathogens utilized so far is mostly based on single dominant resistance genes that mediate specific recognition of invaders and that is often rapidly broken by pathogen variants. Perturbation of plant susceptibility (S) genes offers an alternative providing plants with recessive resistance that is proposed to be more durable. S genes enable the establishment of plant disease, and their inactivation provides opportunities for resistance breeding of crops. However, loss of S gene function can have pleiotropic effects. Developments in genome editing technology promise to provide powerful methods to precisely interfere with crop S gene functions and reduce tradeoffs.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Boris Szurek
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.
| |
Collapse
|
6
|
Delaux PM, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 2021; 371:371/6531/eaba6605. [PMID: 33602828 DOI: 10.1126/science.aba6605] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
During 450 million years of diversification on land, plants and microbes have evolved together. This is reflected in today's continuum of associations, ranging from parasitism to mutualism. Through phylogenetics, cell biology, and reverse genetics extending beyond flowering plants into bryophytes, scientists have started to unravel the genetic basis and evolutionary trajectories of plant-microbe associations. Protection against pathogens and support of beneficial, symbiotic, microorganisms are sustained by a blend of conserved and clade-specific plant mechanisms evolving at different speeds. We propose that symbiosis consistently emerges from the co-option of protection mechanisms and general cell biology principles. Exploring and harnessing the diversity of molecular mechanisms used in nonflowering plant-microbe interactions may extend the possibilities for engineering symbiosis-competent and pathogen-resilient crops.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Castanet Tolosan, France.
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
7
|
Dunker F, Oberkofler L, Lederer B, Trutzenberg A, Weiberg A. An Arabidopsis downy mildew non-RxLR effector suppresses induced plant cell death to promote biotroph infection. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:718-732. [PMID: 33063828 PMCID: PMC7853606 DOI: 10.1093/jxb/eraa472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 05/11/2023]
Abstract
Our understanding of obligate biotrophic pathogens is limited by lack of knowledge concerning the molecular function of virulence factors. We established Arabidopsis host-induced gene silencing (HIGS) to explore gene functions of Hyaloperonospora arabidopsidis, including CYSTEINE-RICH PROTEIN (HaCR)1, a potential secreted effector gene of this obligate biotrophic pathogen. HaCR1 HIGS resulted in H. arabidopsidis-induced local plant cell death and reduced pathogen reproduction. We functionally characterized HaCR1 by ectopic expression in Nicotiana benthamiana. HaCR1 was capable of inhibiting effector-triggered plant cell death. Consistent with this, HaCR1 expression in N. benthamiana led to stronger disease symptoms caused by the hemibiotrophic oomycete pathogen Phytophthora capsici, but reduced disease symptoms caused by the necrotrophic fungal pathogen Botrytis cinerea. Expressing HaCR1 in transgenic Arabidopsis confirmed higher susceptibility to H. arabidopsidis and to the bacterial hemibiotrophic pathogen Pseudomonas syringae. Increased H. arabidopsidis infection was in accordance with reduced PATHOGENESIS RELATED (PR)1 induction. Expression of full-length HaCR1 was required for its function, which was lost if the signal peptide was deleted, suggesting its site of action in the plant apoplast. This study provides phytopathological and molecular evidence for the importance of this widespread, but largely unexplored class of non-RxLR effectors in biotrophic oomycetes.
Collapse
Affiliation(s)
- Florian Dunker
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| | - Lorenz Oberkofler
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| | - Bernhard Lederer
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| | - Adriana Trutzenberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| | - Arne Weiberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Islam MT, Gan HM, Ziemann M, Hussain HI, Arioli T, Cahill D. Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in Arabidopsis thaliana Challenged With Phytophthora cinnamomi. FRONTIERS IN PLANT SCIENCE 2020; 11:852. [PMID: 32765538 PMCID: PMC7381280 DOI: 10.3389/fpls.2020.00852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Seaweed extracts are important sources of plant biostimulants that boost agricultural productivity to meet current world demand. The ability of seaweed extracts based on either of the Phaeophyceaean species Ascophyllum nodosum or Durvillaea potatorum to enhance plant growth or suppress plant disease have recently been shown. However, very limited information is available on the mechanisms of suppression of plant disease by such extracts. In addition, there is no information on the ability of a combination of extracts from A. nodosum and D. potatorum to suppress a plant pathogen or to induce plant defense. The present study has explored the transcriptome, using RNA-seq, of Arabidopsis thaliana following treatment with extracts from the two species, or a mixture of both, prior to inoculation with the root pathogen Phytophthora cinnamomi. Following inoculation, five time points (0-24 h post-inoculation) that represented early stages in the interaction of the pathogen with its host were assessed for each treatment and compared with their respective water controls. Wide scale transcriptome reprogramming occurred predominantly related to phytohormone biosynthesis and signaling, changes in metabolic processes and cell wall biosynthesis, there was a broad induction of proteolysis pathways, a respiratory burst and numerous defense-related responses were induced. The induction by each seaweed extract of defense-related genes coincident with the time of inoculation showed that the plants were primed for defense prior to infection. Each seaweed extract acted differently in inducing plant defense-related genes. However, major systemic acquired resistance (SAR)-related genes as well as salicylic acid-regulated marker genes (PR1, PR5, and NPR1) and auxin associated genes were found to be commonly up-regulated compared with the controls following treatment with each seaweed extract. Moreover, each seaweed extract suppressed P. cinnamomi growth within the roots of inoculated A. thaliana by the early induction of defense pathways and likely through ROS-based signaling pathways that were linked to production of ROS. Collectively, the RNA-seq transcriptome analysis revealed the induction by seaweed extracts of suites of genes that are associated with direct or indirect plant defense in addition to responses that require cellular energy to maintain plant growth during biotic stress.
Collapse
Affiliation(s)
- Md Tohidul Islam
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Han Ming Gan
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | | | - Tony Arioli
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
- Seasol International R&D Department, Bayswater, VIC, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| |
Collapse
|
9
|
Hwu FY, Parniske M. Maintenance and Quantitative Phenotyping of the Oomycete-plant Model Pathosystem Hyaloperonospora arabidopsidis-Arabidopsis. Bio Protoc 2020; 10:e3661. [PMID: 33659331 DOI: 10.21769/bioprotoc.3661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 11/02/2022] Open
Abstract
The interaction between the host plant Arabidopsis thaliana (Arabidopsis) and the oomycete Hyaloperonospora arabidopsidis (Hpa) is an established model system for the study of an obligate biotrophic downy mildew interaction. The evaluation of the developmental success of Hpa is often based on the quantification of reproductive structures that are formed on the surface of leaves, such as the sporangiophores or the conidiospores they carry. However, the structural basis of this interaction lies within the plant tissue and, in particular, the haustoria that form inside plant cells. Therefore, valuable additional information about the performance and compatibility of the downy mildew interaction can be gained by light microscopical inspection of the hyphal and haustorial shape inside the plant tissue and within plant cells respectively. Here we describe a protocol for the visualization and quantification of morphological phenotypes inside the plant. While we focus specifically on the quantification of haustorial shape variants, the protocol can easily be adapted for the quantification of other morphological features such as hyphal deformations, or oogonia frequency. By including and refining already existing protocols from a variety of sources, we assembled the entire experimental pipeline for the Arabidopsis Hpa bioassay to provide a practical guide for the initial setup of this system in the laboratory. This pipeline includes the following steps: A) growing Arabidopsis, B) Hpa propagation and strain maintainance C) Hpa inoculation and incubation D) staining of plant tissues for visualization of the pathogen and E) an introduction of the Keyence VHX microscope and Fiji plugin of ImageJ for the quantification of structures of interest. While described here for Arabidopsis and Hpa, the protocol steps B-E should be easily adjustable for the study of other plant-oomycete pathosystems.
Collapse
Affiliation(s)
- Fang-Yu Hwu
- University of Munich (LMU), Faculty of Biology, Genetics, Großhaderner Str. 4, 82152 Martinsried, Germany
| | - Martin Parniske
- University of Munich (LMU), Faculty of Biology, Genetics, Großhaderner Str. 4, 82152 Martinsried, Germany
| |
Collapse
|
10
|
Dunker F, Trutzenberg A, Rothenpieler JS, Kuhn S, Pröls R, Schreiber T, Tissier A, Kemen A, Kemen E, Hückelhoven R, Weiberg A. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. eLife 2020; 9:56096. [PMID: 32441255 PMCID: PMC7297541 DOI: 10.7554/elife.56096] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
The exchange of small RNAs (sRNAs) between hosts and pathogens can lead to gene silencing in the recipient organism, a mechanism termed cross-kingdom RNAi (ck-RNAi). While fungal sRNAs promoting virulence are established, the significance of ck-RNAi in distinct plant pathogens is not clear. Here, we describe that sRNAs of the pathogen Hyaloperonospora arabidopsidis, which represents the kingdom of oomycetes and is phylogenetically distant from fungi, employ the host plant’s Argonaute (AGO)/RNA-induced silencing complex for virulence. To demonstrate H. arabidopsidis sRNA (HpasRNA) functionality in ck-RNAi, we designed a novel CRISPR endoribonuclease Csy4/GUS reporter that enabled in situ visualization of HpasRNA-induced target suppression in Arabidopsis. The significant role of HpasRNAs together with AtAGO1 in virulence was revealed in plant atago1 mutants and by transgenic Arabidopsis expressing a short-tandem-target-mimic to block HpasRNAs, that both exhibited enhanced resistance. HpasRNA-targeted plant genes contributed to host immunity, as Arabidopsis gene knockout mutants displayed quantitatively enhanced susceptibility.
Collapse
Affiliation(s)
- Florian Dunker
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Adriana Trutzenberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Jan S Rothenpieler
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Sarah Kuhn
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Reinhard Pröls
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Tom Schreiber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Ariane Kemen
- Center for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Eric Kemen
- Center for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Ralph Hückelhoven
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Arne Weiberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| |
Collapse
|
11
|
Feng F, Sun J, Radhakrishnan GV, Lee T, Bozsóki Z, Fort S, Gavrin A, Gysel K, Thygesen MB, Andersen KR, Radutoiu S, Stougaard J, Oldroyd GED. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat Commun 2019; 10:5047. [PMID: 31695035 PMCID: PMC6834629 DOI: 10.1038/s41467-019-12999-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
Plants associate with beneficial arbuscular mycorrhizal fungi facilitating nutrient acquisition. Arbuscular mycorrhizal fungi produce chitooligosaccharides (COs) and lipo-chitooligosaccharides (LCOs), that promote symbiosis signalling with resultant oscillations in nuclear-associated calcium. The activation of symbiosis signalling must be balanced with activation of immunity signalling, which in fungal interactions is promoted by COs resulting from the chitinaceous fungal cell wall. Here we demonstrate that COs ranging from CO4-CO8 can induce symbiosis signalling in Medicago truncatula. CO perception is a function of the receptor-like kinases MtCERK1 and LYR4, that activate both immunity and symbiosis signalling. A combination of LCOs and COs act synergistically to enhance symbiosis signalling and suppress immunity signalling and receptors involved in both CO and LCO perception are necessary for mycorrhizal establishment. We conclude that LCOs, when present in a mix with COs, drive a symbiotic outcome and this mix of signals is essential for arbuscular mycorrhizal establishment.
Collapse
Affiliation(s)
- Feng Feng
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Jongho Sun
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Guru V Radhakrishnan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Tak Lee
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Zoltán Bozsóki
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000 C, Denmark
| | - Sébastien Fort
- Université de Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Aleksander Gavrin
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000 C, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, 1871 C, Denmark
| | | | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000 C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000 C, Denmark
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK.
| |
Collapse
|