1
|
Sharma V, Pal J, Dashora V, Chattopadhyay S, Kapoor Y, Singha B, Arimbasseri GA, Saha S. The SET29 and SET7 proteins of Leishmania donovani exercise non-redundant convergent as well as collaborative functions in moderating the parasite's response to oxidative stress. J Biol Chem 2025; 301:108208. [PMID: 39842664 PMCID: PMC11871502 DOI: 10.1016/j.jbc.2025.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
SET proteins are lysine methyltransferases. In investigating Leishmania donovani SET29, we found depletion of LdSET29 by two-thirds did not affect promastigote growth, nor alter the parasite's response to UV-induced or HU-induced stress, but made it more tolerant to H2O2-induced oxidizing environment. The deviant response to oxidative stress was coupled to lowered accumulation of reactive oxygen species, which was linked to enhanced scavenging activity. The set29 mutants' response to H2O2 exposure was similar to that of set7 mutants, prompting an investigation into genetic and physical interactions between the two proteins. While neither protein could rescue the aberrant phenotypes of the other set mutant, the two proteins interacted physically in vitro and in vivo. Transcriptome analyses revealed that neither protein regulated global gene expression, but LdSET7 controlled transcript levels of a limited number of genes, including several peroxidases. In working towards identifying targets through which SET7/SET29 mediate the cell's response to an oxidative milieu, we found HSP60/CNP60 and TCP1 to be possible candidates. LdHSP60 has earlier been implicated in the regulation of the response of virulent promastigotes to H2O2 exposure, and LdTCP1 has previously been found to have a protective effect against oxidative stress. set7 and set29 mutants survived more proficiently in host macrophages as well. The data suggest an alliance between LdSET29 and LdSET7 in mounting the parasite's response to oxidative stress, each protein playing its own distinctive role. They ensure the parasite not only establishes infection but also maintains the balance with host cells to enable the persistence of infection.
Collapse
Affiliation(s)
- Varshni Sharma
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Jyoti Pal
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Vishal Dashora
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | | - Yogita Kapoor
- Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Biplab Singha
- National Institute of Immunology, New Delhi, India; Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
2
|
Pal S, Dam S. Identification and characterisation of a novel EhOrc1/Cdc6 from the human pathogen Entamoeba histolytica: an in silico approach. J Biomol Struct Dyn 2025; 43:1883-1892. [PMID: 38095553 DOI: 10.1080/07391102.2023.2293264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2025]
Abstract
The onset of a pre-replication complex on origin commences DNA replication. The Origin recognition complex (Orc), Cell division cycle protein 6 (Cdc6), and the minichromosome maintenance (Mcm) replicative helicase, along with Chromatin licensing and DNA replication factor 1 (Cdt1), make up the pre-replication complex in eukaryotes. Eukaryotic Orc is made up of six subunits, designated Orc1-6 while monomeric Cdc6 has sequence similarity with Orc1. However, Orc has remained unexplored in the protozoan parasite Entamoeba histolytica. Here we report a single functional Orc1/Cdc6 protein in E. histolytica. Its structural and functional aspects have been highlighted by a detailed in silico analysis that reflects physicochemical characteristics, predictive 3D structure modelling, protein-protein interaction studies, molecular docking and simulation. This in silico study provides insight into EhOrc1/Cdc6 and points out that E. histolytica carries pre-replication machinery that is less complex than higher eukaryotes and closer to archaea. Additionally, it lays the groundwork for future investigations into the methods of origin recognition, and anomalies of cell cycle observed in this enigmatic parasite.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suchetana Pal
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
3
|
Mejía-Jaramillo AM, Ospina-Zapata H, Fernandez GJ, Triana-Chávez O. Transcriptomic analysis of benznidazole-resistant Trypanosoma cruzi clone reveals nitroreductase I-independent resistance mechanisms. PLoS One 2025; 20:e0314189. [PMID: 39964998 PMCID: PMC12005674 DOI: 10.1371/journal.pone.0314189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
The enzyme nitroreductase I (NTRI) has been implicated as the primary gene responsible for resistance to benznidazole (Bz) and nifurtimox in Trypanosoma cruzi. However, Bz-resistant T. cruzi field isolates carrying the wild-type NTR-I enzyme suggest that additional mechanisms independent of this enzyme may contribute to the resistance phenotype. To investigate these alternative mechanisms, in this paper, we pressured a Trypanosoma cruzi clone with a high Bz concentration over several generations to select Bz-resistant clones. Surprisingly, we found a highly drug-resistant clone carrying a wild-type NTRI. However, the knockout of this gene using CRISPR-Cas9 in the sensitive clone showed that NTRI indeed induces resistance to Bz and supports the idea that the resistant one exhibits mechanisms other than NTRI. To explore these new mechanisms, we performed an RNA-seq analysis, which revealed genes involved in metabolic pathways related to oxidative stress, energy metabolism, membrane transporters, DNA repair, and protein synthesis. Our results support the idea that resistance to benznidazole is a multigenic trait. A Deeper understanding of these genes is essential for developing new drugs to treat Chagas disease.
Collapse
Affiliation(s)
- Ana María Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia, South America
| | - Hader Ospina-Zapata
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia, South America
| | - Geysson Javier Fernandez
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia, South America
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia, South America
| |
Collapse
|
4
|
Wang T, Wang Z. Targeting the "Undruggable": Small-Molecule Inhibitors of Proliferating Cell Nuclear Antigen (PCNA) in the Spotlight in Cancer Therapy. J Med Chem 2025; 68:2058-2088. [PMID: 39904718 DOI: 10.1021/acs.jmedchem.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
PCNA plays multiple roles in cancer development, including cell proliferation regulation, DNA repair, replication, and serving as a widely used biomarker and therapeutic target. Despite its significant role in oncology, PCNA has historically been considered "undruggable" due to the absence of known endogenous small molecule modulators and identifiable ligand binding sites. Unlike other protein-protein interfaces, PCNA lacks explicit binding grooves, featuring a relatively small and shallow surface pocket, which hinders the discovery of traditional small molecule targets. Recent breakthroughs have introduced promising PCNA-targeting candidates, with ATX-101 and AOH1996 entering phase I clinical trials for cancer therapy, garnering academic and industry interest. These achievements provide new evidence for PCNA as a drug target. This article provides insight and perspective on the application of small-molecule PCNA inhibitors in cancer treatment, covering PCNA function, its relationship with cancer, structural modification of small molecule inhibitors, and discovery strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- Jiangxi Provincial Key Laboratory of TCM Female Reproductive Health and Related Diseases Research and Transformation, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
| |
Collapse
|
5
|
Zhang JN, Li LW, Cao MQ, Liu X, Yi ZL, Liu SS, Liu H. Functional Analysis and Experimental Validation of the Prognostic and Immune Effects of the Oncogenic Protein CDC45 in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:11-25. [PMID: 39811603 PMCID: PMC11727330 DOI: 10.2147/bctt.s497975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Purpose Cell division cycle protein 45 (CDC45) plays a crucial role in DNA replication. This study investigates its role in breast cancer (BC) and its impact on tumor progression. Methods We utilized the GEO database to screen differentially expressed genes (DEGs) and conducted enrichment analysis on these genes. We established a Nomogram model based on CDC45 and other clinical indicators. Additionally, we performed protein-protein interaction (PPI) network construction, drug sensitivity analysis, and immune correlation analysis of CDC45. The function of CDC45 was further verified through cell and animal experiments. Results CDC45 is highly expressed in most tumors, including BC. The expression level of CDC45 was significantly associated with age, sex, race, cancer stage, and molecular subtypes (all p < 0.05). CDC45 was incorporated into a Nomogram model, which showed moderate accuracy in predicting patient prognosis. We also analyzed the co-expression genes of CDC45, including TOPBP1, GINS2, MCM5, GINS1, GINS4, POLE2, MCM2, MCM6, MCM4, and MCM7. Furthermore, CDC45 expression was closely linked to immune infiltration levels, immune checkpoint inhibitors, and the therapeutic response to small molecule drugs. Finally, both in vitro and in vivo experiments confirmed the cancer-promoting effect of CDC45 in BC. Conclusion The expression level of CDC45 is linked to the prognosis, immune infiltration, and drug sensitivity of BC. In vitro and in vivo experiments have confirmed that CDC45 acts as a cancer-promoting protein in breast cancer.
Collapse
Affiliation(s)
- Jia-Ning Zhang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People’s Republic of China
| | - Lin-Wei Li
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People’s Republic of China
| | - Man-Qing Cao
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People’s Republic of China
| | - Xin Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People’s Republic of China
| | - Zi-Lu Yi
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People’s Republic of China
| | - Sha-Sha Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People’s Republic of China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Wu T, Liao L, Wu T, Chen S, Yi Q, Xu M. IGF2BP2 promotes glycolysis and hepatocellular carcinoma stemness by stabilizing CDC45 mRNA via m6A modification. Cell Cycle 2023; 22:2245-2263. [PMID: 37985379 PMCID: PMC10730143 DOI: 10.1080/15384101.2023.2283328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023] Open
Abstract
A growing number of studies have shown the prognostic importance of Cell division cycle protein 45 (CDC45) in hepatocellular carcinoma (HCC). This study aims to investigate the biological function and mechanism of CDC45 in HCC. The differential expression and prognostic significance of CDC45 in HCC and normal tissues were analyzed by bioinformatics. CDC45 was knocked down and the biological effects of CDC45 in HCC in vitro and in vivo were measured. Subsequently, using RNA m6A colorimetry and Methylated RNA Immunoprecipitation (MeRIP), the levels of m6A modification of total RNA and CDC45 were evaluated in cells. RIP was applied to establish that CDC45 and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) interact. A test using actinomycin D was performed to gauge the stability of the CDC45 mRNA. Furthermore, the regulatory role of IGF2BP2 on CDC45 expression in HCC progression was explored by overexpressing IGF2BP2. High expression of CDC45 was correlated with poor prognosis in HCC patients. Knocking down CDC45 inhibited HCC cell proliferation, migration, invasion, EMT, stemness, and glycolysis, and promoted apoptosis, which was verified through in vitro experiments. Additionally, IGF2BP2 was highly expressed in HCC cells, and it was found to interact with CDC45. Knocking down IGF2BP2 resulted in reduced stability of CDC45 mRNA. Moreover, overexpression of IGF2BP2 promoted HCC cell proliferation, migration, invasion, EMT, stemness, and glycolysis, while inhibiting apoptosis, which was reversed by knocking down CDC45. In general, IGF2BP2 promoted HCC glycolysis and stemness by stabilizing CDC45 mRNA via m6A modification. [Figure: see text].
Collapse
Affiliation(s)
- Tao Wu
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, China
- Department of Urology Surgery, Yueyang Central Hospital, Yueyang, China
| | - Li Liao
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, China
| | - Tao Wu
- Department of Urology Surgery, Yueyang Central Hospital, Yueyang, China
| | - Shuai Chen
- Department of Urology Surgery, Yueyang Central Hospital, Yueyang, China
| | - Qilin Yi
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, China
| | - Min Xu
- Department of Hepatobiliary Surgery, Yueyang Central Hospital, Yueyang, China
| |
Collapse
|
7
|
Wang W, Yan T, Guo X, Cai H, Liang C, Huang L, Wang Y, Ma P, Qi S. KAP1 phosphorylation promotes the survival of neural stem cells after ischemia/reperfusion by maintaining the stability of PCNA. Stem Cell Res Ther 2022; 13:290. [PMID: 35799276 PMCID: PMC9264526 DOI: 10.1186/s13287-022-02962-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Aims To explore the function of phosphorylation of KAP1 (p-KAP1) at the serine-824 site (S824) in the proliferation and apoptosis of endogenous neural stem cells (NSCs) after cerebral ischemic/reperfusion (I/R). Methods The apoptosis and proliferation of C17.2 cells transfected with the p-KAP1-expression plasmids and the expression of proliferation cell nuclear antigen (PCNA) and p-KAP1 were detected by immunofluorescence and Western blotting after the Oxygen Glucose deprivation/reperfusion model (OGD/R). The interaction of p-KAP1 and CUL4A with PCNA was analyzed by immunoprecipitation. In the rats MCAO model, we performed the adeno-associated virus (AAV) 2/9 gene delivery of p-KAP1 mutants to verify the proliferation of endogenous NSCs and the colocalization of PCNA and CUL4A by immunofluorescence. Results The level of p-KAP1 was significantly down-regulated in the stroke model in vivo and in vitro. Simulated p-KAP1(S824) significantly increased the proliferation of C17.2 cells and the expression of PCNA after OGD/R. Simulated p-KAP1(S824) enhanced the binding of p-KAP1 and PCNA and decreased the interaction between PCNA and CUL4A in C17.2 cells subjected to OGD/R. The AAV2/9-mediated p-KAP1(S824) increased endogenous NSCs proliferation, PCNA expression, p-KAP1 binding to PCNA, and improved neurological function in the rat MCAO model. Conclusions Our findings confirmed that simulated p-KAP1(S824) improved the survival and proliferation of endogenous NSCs. The underlying mechanism is that highly expressed p-KAP1(S824) promotes binding to PCNA, and inhibits the binding of CUL4A to PCNA. This reduced CUL4A-mediated ubiquitination degradation to increase the stability of PCNA and promote the survival and proliferation of NSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02962-5.
Collapse
Affiliation(s)
- Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Tianqing Yan
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xinjian Guo
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Heng Cai
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chang Liang
- School of Basic Medical Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Linyan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yanling Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ping Ma
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China. .,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, China. .,Pharmacology College, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
8
|
Fu Y, Lv Z, Kong D, Fan Y, Dong B. High abundance of CDC45 inhibits cell proliferation through elevation of HSPA6. Cell Prolif 2022; 55:e13257. [PMID: 35642733 PMCID: PMC9251052 DOI: 10.1111/cpr.13257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES CDC45 is the core component of CMG (CDC45-MCMs-GINS) complex that plays important role in the initial step of DNA replication in eukaryotic cells. The expression level of cdc45 is under the critical control for the accurate cell cycle progression. Loss-of-function of cdc45 has been demonstrated to inhibit cell proliferation and leads to cell death due to the inhibition of DNA replication and G1-phase arrest. An increasing of CDC45 inhibits cell proliferation as well. Nevertheless, a systematic analysis of the effect of high dose of CDC45 on cell physiology and behaviors is unclear. In the present study, we aimed to investigate the effects and mechanisms of high dose of CDC45 on cell behaviors. MATERIALS AND METHODS We overexpressed cdc45 in cultured cell lines, Ciona and Drosophila embryos, respectively. The cell cycle progression was examined by the BrdU incorporation experiment, flow cytometry and PH3 (phospho-Histone 3) staining. RNA-sequencing analysis and qRT-PCR were carried out to screen the affected genes in HeLa cells overexpressing cdc45. siRNA-mediated knockdown was performed to investigate gene functions in HeLa cells overexpressing cdc45. RESULTS We found that high level of cdc45 from different species (human, mammal, ascidian, and Drosophila) inhibited cell cycle in vitro and in vivo. High dose of CDC45 blocks cells entering into S phase. However, we failed to detect DNA damage and cell apoptosis. We identified hspa6 was the most upregulated gene in HeLa cells overexpressing cdc45 via RNA-seq analysis and qRT-PCR validation. Overexpression of Hs-hspa6 inhibited proliferation rate and DNA replication in HeLa cells, mimicking the phenotype of cdc45 overexpression. RNAi against hspa6 partially rescued the cell proliferation defect caused by high dose of CDC45. CONCLUSIONS Our study suggests that high abundance of CDC45 stops cell cycle. Instead of inducing apoptosis, excessive CDC45 prevents cell entering S phase probably due to promoting hspa6 expression.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Sars‐Fang Centre, MoE Key Laboratory of Marine Genetics and BreedingCollege of Marine Life Sciences, Ocean University of ChinaQingdaoChina
| | - Zhiyi Lv
- Sars‐Fang Centre, MoE Key Laboratory of Marine Genetics and BreedingCollege of Marine Life Sciences, Ocean University of ChinaQingdaoChina
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Deqing Kong
- Department of BiologyPhilipps UniversityMarburgGermany
| | - Yuping Fan
- Sars‐Fang Centre, MoE Key Laboratory of Marine Genetics and BreedingCollege of Marine Life Sciences, Ocean University of ChinaQingdaoChina
| | - Bo Dong
- Sars‐Fang Centre, MoE Key Laboratory of Marine Genetics and BreedingCollege of Marine Life Sciences, Ocean University of ChinaQingdaoChina
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
9
|
Gao X, Cai T, Lin Y, Zhu R, Hao W, Guo S, Hu G. The function of glucose metabolism in embryonic diapause of annual killifish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100965. [PMID: 35149343 DOI: 10.1016/j.cbd.2022.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Annual killifish could survive as diapaused embryos buried in soil during dry seasons. When the embryos in diapause III were incubated in water, the larvae could be hatched quickly. However, the mechanism of diapause and hatching of annual killifish was ambiguous. In the present study, Nothobranchius guentheri were used as the model to clarify the physiological mechanism of diapause and hatching of annual killifish. The results indicated that incubation with water could significantly enhance the heart rate and blood circulation of embryos. To clarify the molecular mechanism, the transcriptomic analysis was used to compare the embryos in diapause I, diapause III, and hatching period. The results showed that DNA replication-related genes, cell division cycle 45 and proliferating cell nuclear antigen were more highly expressed in diapause I compared to diapause III. In addition, the transcript levels of glucagon, glucokinase and phosphofructokinase were more abundantly detected in hatching period compared to diapause III, but insulin receptor and insulin-like growth factor-binding protein were lower. These results indicated glucose metabolism might play an important role in diapause and hatching of killifish. To further confirm this result, several reagents involved in glucose metabolism were used to incubate embryos in diapause III. The results displayed that glucose and glucagon could both shorten the hatching time of embryos. In contrast, 2-deoxy-d-glucose, metformin, and insulin could prolong the hatching time and reduce the hatching rate. The results further confirmed that glucose metabolism played an important role in the diapause and hatching of annual killifish.
Collapse
Affiliation(s)
- Xiaowen Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyi Cai
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongtong Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenxin Hao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuming Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
He Y, Yin X, Dong J, Yang Q, Wu Y, Gong Z. Transcriptome Analysis of Caco-2 Cells upon the Exposure of Mycotoxin Deoxynivalenol and Its Acetylated Derivatives. Toxins (Basel) 2021; 13:167. [PMID: 33671637 PMCID: PMC7927021 DOI: 10.3390/toxins13020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) are type B trichothecenes; one of the major pollutants in food and feed products. Although the toxicity of DON has been well documented, information on the toxicity of its acetylated derivative remains incomplete. To acquire more detailed insight into 3-ADON and 15-ADON, Caco-2 cells under 0.5 µM DON, 3-ADON and 15-ADON treatment for 24 h were subjected to RNA-seq analysis. In the present study, 2656, 3132 and 2425 differentially expressed genes (DEGs) were selected, respectively, and were enriched utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) database. The upregulation of ataxia-telangiectasia mutated kinase (ATM), WEE1 homolog 2 (WEE2) and downregulation of proliferating cell nuclear antigen (PCNA), minichromosome maintenance (MCMs), cyclin dependent kinase (CDKs), and E2Fs indicate that the three toxins induced DNA damage, inhibition of DNA replication and cell cycle arrest in Caco-2 cells. Additionally, the upregulation of sestrin (SENEs) and NEIL1 implied that the reason for DNA damage may be attributable to oxidative stress. Our study provides insight into the toxic mechanism of 3-ADON and 15-ADON.
Collapse
Affiliation(s)
- Yuyun He
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Xiaoyao Yin
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Jingjing Dong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, Beijing 100000, China;
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| |
Collapse
|