1
|
Li DF, Wang S, Suarez CE, Xuan X, He L, Zhao JL. Pushing the frontiers of babesiosis research: in vitro culture and gene editing. Trends Parasitol 2025; 41:317-329. [PMID: 40089452 DOI: 10.1016/j.pt.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Babesiosis is a tick-borne parasitic disease that poses a significant risk to both animal and human health. A comprehensive understanding of Babesia biology necessitates the application of advanced laboratory techniques. This review explores recent advancements in gene editing technologies of Babesia, emphasizing the foundational importance of in vitro culture systems. We highlight the historical challenges encountered in establishing effective in vitro culture and discuss the need for optimizing these methods to enhance gene editing efficiency. Here, we describe recent progress in Babesia transfection, different gene manipulation systems, and the applications of gene editing. This review aims to provide essential insights and technical guidance for future studies in Babesia genetics, highlighting the transformative potential of gene manipulation in combating this important parasitic disease.
Collapse
Affiliation(s)
- Dong-Fang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China
| | - Sen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Lan He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China.
| | - Jun-Long Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
2
|
Hakimi H, Yamagishi J, Sakaguchi M, Fathi A, Lee JS, Verocai GG, Kawazu SI, Asada M. ves1α genes expression is the major determinant of Babesia bovis-infected erythrocytes cytoadhesion to endothelial cells. PLoS Pathog 2025; 21:e1012583. [PMID: 40294074 PMCID: PMC12064010 DOI: 10.1371/journal.ppat.1012583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 05/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Babesia bovis causes the most pathogenic form of babesiosis in cattle, resulting in high mortality in naive adults. This parasite invades red blood cells (RBCs) within the bovine hosts where they multiply and produce clinical disease. Babesia bovis exports numerous proteins into invaded RBCs changing its properties. Thus, the infected RBCs (iRBCs) are capable to cytoadhere in the microvasculature of internal organs and brain, leading to respiratory distress, neurologic signs, and mortality. Variant Erythrocyte Surface Antigen 1 (VESA1) is one of those exported proteins by B. bovis which represents a major virulence factor due to its central role in immune evasion by antigenic variation and intravascular parasite sequestration. VESA1 is a heterodimer protein encoded by ves1α and ves1β multigene family and localized on the ridges, the focal point for cytoadhesion. To gain further insights into the molecular mechanisms of cytoadhesion of B. bovis, we panned the parasites with bovine brain microvasculature endothelial cells, which resulted in obtaining several clones with different cytoadherence abilities. The transcriptome analysis of 2 high and 2 low cytoadherent clones revealed that ves1α sequences were diversified, likely resulting from genomic recombination. On the other hand, ves1β sequences were almost identical among these 4 clones. Insertion and expression of ves1α of a clone with high binding into ef-1α locus of a low binding clone increased cytoadherence confirming the role of ves1α suggested by our transcriptome data. Whole genome sequencing of cytoadherent clones revealed active locus of ves1 on chromosome 2. These results suggest that VESA1a proteins encoded by ves1α genes determine the cytoadherence strength of B. bovis and they are in the active site for recombination.
Collapse
Affiliation(s)
- Hassan Hakimi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Atefeh Fathi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Jae Seung Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
3
|
Flores-Vega JJ, Puente-Rivera J, Sosa-Mondragón SI, Camacho-Nuez M, Alvarez-Sánchez ME. RAD51 recombinase and its paralogs: Orchestrating homologous recombination and unforeseen functions in protozoan parasites. Exp Parasitol 2024; 267:108847. [PMID: 39414114 DOI: 10.1016/j.exppara.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
The DNA of protozoan parasites is highly susceptible to damage, either induced by environmental agents or spontaneously generated during cellular metabolism through reactive oxygen species (ROS). Certain phases of the cell cycle, such as meiotic recombination, and external factors like ionizing radiation (IR), ultraviolet light (UV), or chemical genotoxic agents further increase this susceptibility. Among the various types of DNA damage, double-stranded breaks (DSBs) are the most critical, as they are challenging to repair and can result in genetic instability or cell death. DSBs caused by environmental stressors are primarily repaired via one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). In multicellular eukaryotes, NHEJ predominates, but in unicellular eukaryotes such as protozoan parasites, HR seems to be the principal mechanism for DSB repair. The HR pathway is orchestrated by proteins from the RAD52 epistasis group, including RAD51, RAD52, RAD54, RAD55, and the MRN complex. This review focuses on elucidating the diverse roles and significance of RAD51 recombinase and its paralogs in protozoan parasites, such as Acanthamoeba castellanii, Entamoeba histolytica (Amoebozoa), apicomplexan parasites (Chromalveolata), Naegleria fowleri, Giardia spp., Trichomonas vaginalis, and trypanosomatids (Excavata), where they primarily function in HR. Additionally, we analyze the diversity of proteins involved in HR, both upstream and downstream of RAD51, and discuss the implications of these processes in parasitic protozoa.
Collapse
Affiliation(s)
- Jose Jesús Flores-Vega
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico; División de Investigación. Hospital Juárez de México, Ciudad de México, 07760, Mexico.
| | - Sharon Itzel Sosa-Mondragón
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico.
| |
Collapse
|
4
|
Barcons-Simon A, Carrington M, Siegel TN. Decoding the impact of nuclear organization on antigenic variation in parasites. Nat Microbiol 2023; 8:1408-1418. [PMID: 37524976 DOI: 10.1038/s41564-023-01424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the impact of nuclear organization on antigenic variation in the protozoan pathogens Trypanosoma brucei and Plasmodium falciparum. In particular, we highlight the relevance of nuclear organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation.
Collapse
Affiliation(s)
- Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Oladokun R, Adekanmbi E, Ueti M, Srivastava S. Dielectric characterization of Babesia bovis using the dielectrophoretic crossover frequency. Electrophoresis 2023. [PMID: 37160713 DOI: 10.1002/elps.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Coinfection with the tick-transmitted pathogen Babesia spp. is becoming a serious health problem because of the erythrocyte invasion through Ixodes scapularis tick. The transmission of this protozoan by blood transfusion often results in high morbidity and mortality in recipients. A novel way to detect parasitized erythrocytes is by utilizing dielectrophoresis, an electrokinetic technique on a microfluidic platform, to improve the diagnostics of Babesia spp. The differences in the dielectric properties of Babesia spp.-infected erythrocytes versus healthy erythrocytes were exploited to design a fast and cost-effective diagnostic tool. One crucial factor for a successful diagnostic platform via dielectrophoretic separation is the dielectric characterization of Babesia-infected erythrocytes, which is investigated in this paper. The influence of medium conductivity and erythrocytes phenotype and genotype over the first crossover frequency (fco1 ) are used to quantify the dielectric properties of the infected cells. A sigmoidal curve was plotted via curve fitting of the single-shell model, which has been proven appropriate for parasitized cell populations where considerable cell geometry variation occurs. The difference in these curves is relevant for the separation of cells population. Microliters of sample and reagent were used throughout this experiment; the scale, results obtained, and simplicity of the system often make it very suitable for point-of-care babesiosis disease diagnostics.
Collapse
Affiliation(s)
- Raphael Oladokun
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia, USA
| | | | - Massaro Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Soumya Srivastava
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
6
|
Allred DR. Integration of DNA Repair, Antigenic Variation, Cytoadhesion, and Chance in Babesia Survival: A Perspective. Front Cell Infect Microbiol 2022; 12:869696. [PMID: 35493746 PMCID: PMC9047050 DOI: 10.3389/fcimb.2022.869696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites live in hostile environments in which they are challenged chemically and their hosts attempt in many ways to kill them. In response, the parasites have evolved multiple mechanisms that take advantage of these challenges to enhance their survival. Perhaps the most impressive example is the evolutionary co-option of DNA repair mechanisms by the parasites as a means to rapidly manipulate the structure, antigenicity, and expression of the products of specific multigene families. The purpose of variant proteins that mediate cytoadhesion has long been thought to be primarily the avoidance of splenic clearance. Based upon known biology, I present an alternative perspective in which it is survival of the oxidative environment within which Babesia spp. parasites live that has driven integration of DNA repair, antigenic variation, and cytoadhesion, and speculate on how genome organization affects that integration. This perspective has ramifications for the development of parasite control strategies.
Collapse
Affiliation(s)
- David R. Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: David R. Allred,
| |
Collapse
|
7
|
Alzan HF, Bastos RG, Laughery JM, Scoles GA, Ueti MW, Johnson WC, Suarez CE. A Culture-Adapted Strain of Babesia bovis Has Reduced Subpopulation Complexity and Is Unable to Complete Its Natural Life Cycle in Ticks. Front Cell Infect Microbiol 2022; 12:827347. [PMID: 35223550 PMCID: PMC8867610 DOI: 10.3389/fcimb.2022.827347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Babesia bovis natural field strains are composed of several geno-phenotypically distinct subpopulations. This feature, together with possible epigenetic modifications, may facilitate adaptation to variable environmental conditions. In this study we compare geno-phenotypical features among long-term (more than 12 years) (LTCP) and short-term cultured B. bovis parasites (STCP) derived from the B. bovis S74-T3Bo strain. LTCPs intraerythrocytic forms are smaller in size than STCPs and have faster in vitro growth rate. In contrast to its parental strain, the LTCP lack expression of the sexual stage specific 6cysA and 6cysB proteins and are unable to develop sexual forms upon in vitro sexual stage induction. Consistently, in contrast to its parental strain, LTCPs have reduced virulence and are not transmissible to cattle by vector competent Rhipicephalus microplus (R. microplus). Similar to previous comparisons among attenuated and virulent B. bovis strains, the LTCP line has decreased genomic diversity compared to the STCP line. Thus, LTCP may contribute to our understanding of adaptive mechanisms used by the parasites in response to environmental changes, protective immunity, virulence, and transmission by ticks. In addition, LTCPs may be considered as candidates for a non-tick transmissible vaccine against bovine babesiosis.
Collapse
Affiliation(s)
- Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, National Research Center, Giza, Egypt
- Tick and Tick-Borne Disease Research Unit, National Research Center, Giza, Egypt
- *Correspondence: Heba F. Alzan, ; Carlos E. Suarez,
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Glen A. Scoles
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, Beltsville, MD, United States
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
| | - Wendell C. Johnson
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- *Correspondence: Heba F. Alzan, ; Carlos E. Suarez,
| |
Collapse
|
8
|
Recent Advances in Molecular Genetic Tools for Babesia. Vet Sci 2021; 8:vetsci8100222. [PMID: 34679052 PMCID: PMC8541370 DOI: 10.3390/vetsci8100222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 10/02/2021] [Indexed: 11/21/2022] Open
Abstract
Development of in vitro culture and completion of genome sequencing of several Babesia parasites promoted the efforts to establish transfection systems for these parasites to dissect the gene functions. It has been more than a decade since the establishment of first transfection for Babesia bovis, the causative agent of bovine babesiosis. However, the number of genes that were targeted by genetic tools in Babesia parasites is limited. This is partially due to the low efficiencies of these methods. The recent adaptation of CRISPR/Cas9 for genome editing of Babesia bovis can accelerate the efforts for dissecting this parasite’s genome and extend the knowledge on biological aspects of erythrocytic and tick stages of Babesia. Additionally, glmS ribozyme as a conditional knockdown system is available that could be used for the characterization of essential genes. The development of high throughput genetic tools is needed to dissect the function of multigene families, targeting several genes in a specific pathway, and finally genome-wide identification of essential genes to find novel drug targets. In this review, we summarized the current tools that are available for Babesia and the genes that are being targeted by these tools. This may draw a perspective for the future development of genetic tools and pave the way for the identification of novel drugs or vaccine targets.
Collapse
|