1
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Nguyễn KB, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. Cell Chem Biol 2023; 30:811-827.e7. [PMID: 37419112 PMCID: PMC10510412 DOI: 10.1016/j.chembiol.2023.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxICAT, Biotin Switch, and SP3-Rox, these methods typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. Here we establish the local cysteine capture (Cys-LoC) and local cysteine oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole-cell proteomic analysis. Application of the Cys-LOx method to LPS-stimulated immortalized murine bone marrow-derived macrophages (iBMDM), revealed previously unidentified, mitochondrially localized cysteine oxidative modifications upon pro-inflammatory activation, including those associated with oxidative mitochondrial metabolism.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Andréa B Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Kaitlyn B Nguyễn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Stephanie L Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Ramanathan R, Hatzios SK. Activity-based Tools for Interrogating Host Biology During Infection. Isr J Chem 2023; 63:e202200095. [PMID: 37744997 PMCID: PMC10512441 DOI: 10.1002/ijch.202200095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/18/2023]
Abstract
Host cells sense and respond to pathogens by dynamically regulating cell signaling. The rapid modulation of signaling pathways is achieved by post-translational modifications (PTMs) that can alter protein structure, function, and/or binding interactions. By using chemical probes to broadly profile changes in enzyme function or side-chain reactivity, activity-based protein profiling (ABPP) can reveal PTMs that regulate host-microbe interactions. While ABPP has been widely utilized to uncover microbial mechanisms of pathogenesis, in this review, we focus on more recent applications of this technique to the discovery of host PTMs and enzymes that modulate signaling within infected cells. Collectively, these advances underscore the importance of ABPP as a tool for interrogating the host response to infection and identifying potential targets for host-directed therapies.
Collapse
Affiliation(s)
- Renuka Ramanathan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520 USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516 USA
| | - Stavroula K. Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520 USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516 USA
- Department of Chemistry, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
3
|
Kovalyova Y, Bak DW, Gordon EM, Fung C, Shuman JHB, Cover TL, Amieva MR, Weerapana E, Hatzios SK. An infection-induced oxidation site regulates legumain processing and tumor growth. Nat Chem Biol 2022; 18:698-705. [PMID: 35332331 PMCID: PMC9246868 DOI: 10.1038/s41589-022-00992-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022]
Abstract
Oxidative stress is a defining feature of most cancers, including those that stem from carcinogenic infections1. Reactive oxygen species (ROS) can drive tumor formation2–4, yet the molecular oxidation events that contribute to tumorigenesis are largely unknown. Here we show that inactivation of a single, redox-sensitive cysteine in the host protease legumain, which is oxidized during infection with the gastric cancer-causing bacterium Helicobacter pylori, accelerates tumor growth. By using chemical proteomics to map cysteine reactivity in human gastric cells, we determined that H. pylori infection induces oxidation of legumain at Cys219. Legumain oxidation dysregulates intracellular legumain processing and decreases the activity of the enzyme in H. pylori-infected cells. We further show that the site-specific loss of Cys219 reactivity increases tumor growth and mortality in a xenograft model. Our findings establish a link between an infection-induced oxidation site and tumorigenesis while underscoring the importance of cysteine reactivity in tumor growth.
Collapse
Affiliation(s)
- Yekaterina Kovalyova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Chemistry, Yale University, New Haven, CT, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Elizabeth M Gordon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Connie Fung
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer H B Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Vanderbilt University School of Medicine, and Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA. .,Microbial Sciences Institute, Yale University, West Haven, CT, USA. .,Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles. Microorganisms 2022; 10:microorganisms10020437. [PMID: 35208891 PMCID: PMC8877623 DOI: 10.3390/microorganisms10020437] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) bacteria in recent years has been alarming and represents a major public health problem. The development of effective antimicrobial agents remains a key challenge. Nanotechnologies have provided opportunities for the use of nanomaterials as components in the development of antibacterial agents. Indeed, metal-based nanoparticles (NPs) show an effective role in targeting and killing bacteria via different mechanisms, such as attraction to the bacterial surface, destabilization of the bacterial cell wall and membrane, and the induction of a toxic mechanism mediated by a burst of oxidative stress (e.g., the production of reactive oxygen species (ROS)). Considering the lack of new antimicrobial drugs with novel mechanisms of action, the induction of oxidative stress represents a valuable and powerful antimicrobial strategy to fight MDR bacteria. Consequently, it is of particular interest to determine and precisely characterize whether NPs are able to induce oxidative stress in such bacteria. This highlights the particular interest that NPs represent for the development of future antibacterial drugs. Therefore, this review aims to provide an update on the latest advances in research focusing on the study and characterization of the induction of oxidative-stress-mediated antimicrobial mechanisms by metal-based NPs.
Collapse
|