1
|
Sanchez JC, Pierpont TM, Argueta-Zamora D, Wilson K, August A, Cerione RA. PTEN loss in glioma cell lines leads to increased extracellular vesicle biogenesis and PD-L1 cargo in a PI3K-dependent manner. J Biol Chem 2025; 301:108143. [PMID: 39732171 PMCID: PMC11791317 DOI: 10.1016/j.jbc.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Phosphatase and Tensin Homolog (PTEN) is one of the most frequently lost tumor suppressors in cancer and the predominant negative regulator of the PI3K-AKT signaling axis. A growing body of evidence has highlighted the loss of PTEN with immuno-modulatory functions including the upregulation of the programmed death ligand-1 (PD-L1), an altered tumor-derived secretome that drives an immunosuppressive tumor immune microenvironment and resistance to certain immunotherapies. Given their roles in immunosuppression and tumor growth, we examined whether the loss of PTEN would impact the biogenesis, cargo, and function of extracellular vesicles (EVs) in the context of the anti-tumor associated cytokine interferon-γ. Through genetic and pharmacological approaches, we show that total cellular expression of PD-L1 is regulated by JAK/STAT signaling, not PI3K signaling. Instead, we observe that PTEN loss specifically upregulates cell surface levels of PD-L1 and enhances the biogenesis of EVs enriched with PD-L1 in a PI3K-dependent manner. We demonstrate that because of these changes, EVs derived from glioma cells lacking PTEN have a greater ability to suppress T cell receptor signaling. Taken together, these findings provide important new insights into how the loss of PTEN can contribute to an immunosuppressive tumor immune microenvironment, facilitate immune evasion, and highlight a novel role for PI3K signaling in the regulation of EV biogenesis and the cargo they contain.
Collapse
Affiliation(s)
- Julio C Sanchez
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Timothy M Pierpont
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Dariana Argueta-Zamora
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kristin Wilson
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Richard A Cerione
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
2
|
Sanchez JC, Pierpont TM, Argueta-Zamora D, Wilson K, August A, Cerione RA. PTEN loss in glioma cell lines leads to increased extracellular vesicles biogenesis and PD-L1 cargo in a PI3K-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550575. [PMID: 38464280 PMCID: PMC10925116 DOI: 10.1101/2023.07.26.550575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Phosphatase and Tensin Homologue (PTEN) is one of the most frequently lost tumor suppressors in cancer and the predominant negative regulator of the PI3K/AKT signaling axis. A growing body of evidence has highlighted the loss of PTEN with immuno-modulatory functions including the upregulation of the programmed death ligand-1 (PD-L1), an altered tumor derived secretome that drives an immunosuppressive tumor immune microenvironment (TIME), and resistance to certain immunotherapies. Given their roles in immunosuppression and tumor growth, we examined whether the loss of PTEN would impact the biogenesis, cargo, and function of extracellular vesicles (EVs) in the context of the anti-tumor associated cytokine interferon-γ (IFN-γ). Through genetic and pharmacological approaches, we show that PD-L1 expression is regulated by JAK/STAT signaling, not PI3K signaling. Instead, we observe that PTEN loss positively upregulates cell surface levels of PD-L1 and enhances the biogenesis of EVs enriched with PD-L1 in a PI3K-dependent manner. We demonstrate that because of these changes, EVs derived from glioma cells lacking PTEN have a greater ability to suppress T cell receptor (TCR) signaling. Taken together, these findings provide important new insights into how the loss of PTEN can contribute to an immunosuppressive TIME, facilitate immune evasion, and highlight a novel role for PI3K signaling in the regulation of EV biogenesis and the cargo they contain.
Collapse
Affiliation(s)
- Julio C Sanchez
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Timothy M Pierpont
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Dariana Argueta-Zamora
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Kristin Wilson
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Richard A Cerione
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|