1
|
Pelayo-Sánchez G, Yáñez-Morales MDJ, Solano-Vidal R, Silva-Rojas HV, Alvarado-Rosales D, Morales-Rodriguez S, Jiménez-García LF, Lara-Martínez R, Ramírez-Ramírez I, Valdez-Carrasco JM. Hemileia vastatrix in Coffea spp.: Distribution of Urediniospores Grouped by Size and Insights into Morphological Structures. J Fungi (Basel) 2025; 11:109. [PMID: 39997403 PMCID: PMC11855957 DOI: 10.3390/jof11020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Hemileia vastatrix coffee leaf rust reduces Mexican coffee production by 51%. We aimed to analyze the size and distribution of H. vastatrix urediniospores among coffee plantations, as well as the morphological structures of the uredinium. In 2015, 65 leaf samples with rust symptoms were collected from 17 coffee cultivars grown at various altitudes (229-1649 m) under different environmental conditions in 14 regions of four Mexican states. A total of 30 spores per sample were measured and grouped using the Ward centroid method, and the group distribution was analyzed. Uredinia morphology was examined via electron microscopy, and the identity of the rust was confirmed. We identified eight significant spore groups. Groups 8h and 3a had the smallest and largest spores, respectively, which were distributed in two and one state, respectively, at different altitudes. The spores in groups 1b-7f were variable within the intermediate size range, and their distribution was at least one group per state under temperate, warm, and humid conditions. The uredinium had double-cell walls in the pedicels and urediniospores, a split septum, spores with hilum and protuberances, and an oval spore shape; anastomosis was detected on vegetative hyphae and haustoria. These findings may reflect gaps in knowledge in the biological cycle of this rust.
Collapse
Affiliation(s)
- Gabriela Pelayo-Sánchez
- Fitosanidad-Fitopatología, Colegio de Postgraduados, Campus Montecillo, Km 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico; (G.P.-S.); (D.A.-R.)
| | - María de Jesús Yáñez-Morales
- Fitosanidad-Fitopatología, Colegio de Postgraduados, Campus Montecillo, Km 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico; (G.P.-S.); (D.A.-R.)
| | - Roney Solano-Vidal
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Chapingo C.P. 56230, Estado de México, Mexico;
| | - Hilda Victoria Silva-Rojas
- Producción de Semillas, Colegio de Postgraduados, Campus Montecillo, Km 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico;
| | - Dionicio Alvarado-Rosales
- Fitosanidad-Fitopatología, Colegio de Postgraduados, Campus Montecillo, Km 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico; (G.P.-S.); (D.A.-R.)
| | - Simón Morales-Rodriguez
- Unidad de Microscopia Electrónica, Colegio de Postgraduados, Campus Montecillo, Km 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico;
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico; (L.F.J.-G.); (R.L.-M.)
| | - Reyna Lara-Martínez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico; (L.F.J.-G.); (R.L.-M.)
| | - Iván Ramírez-Ramírez
- Recursos Genéticos y Productividad, Colegio de Postgraduados, Campus Montecillo, Km 36.5 Carretera-Federal México-Texcoco, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico;
| | - Jorge M. Valdez-Carrasco
- Fitosanidad-Entomología, Colegio de Postgraduados, Campus Montecillo, Km 36.5 Carretera Federal México-Texcoco, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico;
| |
Collapse
|
2
|
van Westerhoven AC, Aguilera-Galvez C, Nakasato-Tagami G, Shi-Kunne X, Martinez de la Parte E, Chavarro-Carrero E, Meijer HJG, Feurtey A, Maryani N, Ordóñez N, Schneiders H, Nijbroek K, Wittenberg AHJ, Hofstede R, García-Bastidas F, Sørensen A, Swennen R, Drenth A, Stukenbrock EH, Kema GHJ, Seidl MF. Segmental duplications drive the evolution of accessory regions in a major crop pathogen. THE NEW PHYTOLOGIST 2024; 242:610-625. [PMID: 38402521 DOI: 10.1111/nph.19604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.
Collapse
Affiliation(s)
- Anouk C van Westerhoven
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Carolina Aguilera-Galvez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Giuliana Nakasato-Tagami
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Einar Martinez de la Parte
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Edgar Chavarro-Carrero
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department Biointeractions and Plant Health, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Alice Feurtey
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
- Plant Pathology, Eidgenössische Technische Hochschule Zürich, Rämistrasse 101, 8092, Zürich, Switzerland
| | - Nani Maryani
- Biology Education, Universitas Sultan Ageng Tirtayasa, Jalan Raya Palka No.Km 3, 42163, Banten, Indonesia
| | - Nadia Ordóñez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harrie Schneiders
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Koen Nijbroek
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Rene Hofstede
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Anker Sørensen
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Ronny Swennen
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Catholic University of Leuven, Oude Markt 13, 3000, Leuven, Belgium
- International Institute of Tropical Agriculture, Plot 15 Naguru E Rd, Kampala, PO Box 7878, Uganda
| | - Andre Drenth
- The University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Eva H Stukenbrock
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Michael F Seidl
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
3
|
Sperschneider J, Hewitt T, Lewis DC, Periyannan S, Milgate AW, Hickey LT, Mago R, Dodds PN, Figueroa M. Nuclear exchange generates population diversity in the wheat leaf rust pathogen Puccinia triticina. Nat Microbiol 2023; 8:2130-2141. [PMID: 37884814 PMCID: PMC10627818 DOI: 10.1038/s41564-023-01494-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
In clonally reproducing dikaryotic rust fungi, non-sexual processes such as somatic nuclear exchange are postulated to play a role in diversity but have been difficult to detect due to the lack of genome resolution between the two haploid nuclei. We examined three nuclear-phased genome assemblies of Puccinia triticina, which causes wheat leaf rust disease. We found that the most recently emerged Australian lineage was derived by nuclear exchange between two pre-existing lineages, which originated in Europe and North America. Haplotype-specific phylogenetic analysis reveals that repeated somatic exchange events have shuffled haploid nuclei between long-term clonal lineages, leading to a global P. triticina population representing different combinations of a limited number of haploid genomes. Thus, nuclear exchange seems to be the predominant mechanism generating diversity and the emergence of new strains in this otherwise clonal pathogen. Such genomics-accelerated surveillance of pathogen evolution paves the way for more accurate global disease monitoring.
Collapse
Affiliation(s)
- Jana Sperschneider
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, GPO, Canberra, Australian Capital Territory, Australia.
| | - Tim Hewitt
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, GPO, Canberra, Australian Capital Territory, Australia
| | - David C Lewis
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, GPO, Canberra, Australian Capital Territory, Australia
| | - Sambasivam Periyannan
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, GPO, Canberra, Australian Capital Territory, Australia
- School of Agriculture and Environmental Science, Centre for Crop Health, The University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Andrew W Milgate
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, New South Wales, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - Rohit Mago
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, GPO, Canberra, Australian Capital Territory, Australia
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, GPO, Canberra, Australian Capital Territory, Australia.
| | - Melania Figueroa
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, GPO, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
4
|
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int J Mol Sci 2022; 23:9629. [PMID: 36077025 PMCID: PMC9456177 DOI: 10.3390/ijms23179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.
Collapse
Affiliation(s)
- Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Age Qiu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430, USA
| |
Collapse
|