1
|
Bourguignon T, Godinez-Leon JA, Pochet A, Shamsuddin T, Sencio V, Chatagnon J, Grandé A, Fine J, Heumel S, Robil C, Delval L, Piveteau C, Belouzard S, Brodin P, Trottein F, Machelart A, Gref R. Pulmonary delivery of clofoctol-loaded nanoparticles inhibits SARS-CoV-2 replication and reduces pneumonia. Int J Pharm 2025; 677:125634. [PMID: 40280285 DOI: 10.1016/j.ijpharm.2025.125634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Despite the progress made through vaccination campaigns and the use of antivirals, the need for more effective therapeutics to combat respiratory viral infections remains critical. A recent screening of over 2000 repurposed molecules has identified the antibiotic clofoctol (CFT) as a promising candidate for treating COVID-19. However, administering CFT systemically poses challenges due to its low solubility and potential toxicity. In this study, we engineered poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) designed to encapsulate high payloads of CFT, allowing for a controlled drug release in the pulmonary environment. Pharmacokinetic studies demonstrated high CFT bioavailability 8 h after intranasal (i.n.) administration. In preclinical models (mouse and hamster) of COVID-19, i.n. administration of CFT-loaded NPs significantly reduced pulmonary viral loads. Remarkably, vectorized CFT also decreased inflammation and improved pathological scores in the lungs. These results pave the way for a groundbreaking CFT formulation designed to tackle the challenges posed by acute respiratory infections. This study marks the first demonstration of a stable, effective and well-tolerated CFT formulation for the treatment of lung diseases.
Collapse
Affiliation(s)
- Tom Bourguignon
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay 91405 Orsay, France
| | | | - Amine Pochet
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Tahmida Shamsuddin
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay 91405 Orsay, France
| | - Valentin Sencio
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Jonathan Chatagnon
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Axelle Grandé
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Joan Fine
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Séverine Heumel
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Cyril Robil
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Lou Delval
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Catherine Piveteau
- Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, University of Lille, Lille, France
| | - Sandrine Belouzard
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Priscille Brodin
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - François Trottein
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France
| | - Arnaud Machelart
- Université de Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille F-59000 Lille, France.
| | - Ruxandra Gref
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay 91405 Orsay, France.
| |
Collapse
|
2
|
Raczkiewicz I, Rivière C, Bouquet P, Desmarets L, Tarricone A, Camuzet C, François N, Lefèvre G, Silva Angulo F, Robil C, Trottein F, Sahpaz S, Dubuisson J, Belouzard S, Goffard A, Séron K. Hyperforin, the major metabolite of St. John's wort, exhibits pan-coronavirus antiviral activity. Front Microbiol 2024; 15:1443183. [PMID: 39176276 PMCID: PMC11339956 DOI: 10.3389/fmicb.2024.1443183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The COVID-19 pandemic caused by the SARS-CoV-2 virus has underscored the urgent necessity for the development of antiviral compounds that can effectively target coronaviruses. In this study, we present the first evidence of the antiviral efficacy of hyperforin, a major metabolite of St. John's wort, for which safety and bioavailability in humans have already been established. Methods Antiviral assays were conducted in cell culture with four human coronaviruses: three of high virulence, SARS-CoV-2, SARS-CoV, and MERS-CoV, and one causing mild symptoms, HCoV-229E. The antiviral activity was also evaluated in human primary airway epithelial cells. To ascertain the viral step inhibited by hyperforin, time-of-addition assays were conducted. Subsequently, a combination assay of hyperforin with remdesivir was performed. Results The results demonstrated that hyperforin exhibited notable antiviral activity against the four tested human coronaviruses, with IC50 values spanning from 0.24 to 2.55 µM. Kinetic studies indicated that the observed activity occur at a post-entry step, potentially during replication. The antiviral efficacy of hyperforin was additionally corroborated in human primary airway epithelial cells. The results demonstrated a reduction in both intracellular and extracellular SARS-CoV-2 viral RNA, confirming that hyperforin targeted the replication step. Finally, an additive antiviral effect on SARS-CoV-2 was observed when hyperforin was combined with remdesivir. Discussion In conclusion, hyperforin has been identified as a novel pan-coronavirus inhibitor with activity in human primary airway epithelial cells, a preclinical model for coronaviruses. These findings collectively suggest that hyperforin has potential as a candidate antiviral agent against current and future human coronaviruses.
Collapse
Affiliation(s)
- Imelda Raczkiewicz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Céline Rivière
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Audrey Tarricone
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Charline Camuzet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Nathan François
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Gabriel Lefèvre
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Fabiola Silva Angulo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Cyril Robil
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sevser Sahpaz
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Anne Goffard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
3
|
Ba A, Roumy V, Al Ibrahim M, Raczkiewicz I, Samaillie J, Hakem A, Sahpaz S, Belouzard S, Diatta W, Sidybé M, Neut C, Séron K, Seck M, Rivière C. Antibacterial and anti-coronavirus investigation of selected Senegalese plant species according to an ethnobotanical survey. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118070. [PMID: 38521430 DOI: 10.1016/j.jep.2024.118070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Senegal, upper and lower respiratory tract infections constitute a real health problem. To manage these disorders, most people rely on the use of local medicinal plants. This is particularly the case for species belonging to the botanical families, Combretaceae, Fabaceae, Myrtaceae and Rubiaceae, which are widely used to treat various respiratory problems such as colds, flu, rhinitis, sinusitis, otitis, angina, bronchitis, bronchiolitis and also pneumonia. AIM OF THE STUDY The aim of this study was to identify medicinal plants traditionally used for the management of infectious diseases, in particular those of the respiratory tract. On the basis of these ethnopharmacological uses, this study made it possible to highlight the antibacterial, antiviral and cytotoxic activities of selected plant species. MATERIALS AND METHODS An ethnobotanical survey was conducted in Senegal among informants, including herbalists, traditional healers, and households, using medicinal plants in the management of infectious diseases, with a focus on respiratory tract infections. The most cited plant species were evaluated in vitro on a panel of 18 human pathogenic bacteria may be involved in respiratory infections and against the human coronavirus HCoV-229E in Huh-7 cells. The antiviral activity of the most active extracts against HCoV-229E was also evaluated on COVID-19 causing agent, SARS-CoV-2 in Vero-81 cells. In parallel, cytotoxic activities were evaluated on Huh-7 cells. RESULTS A total of 127 informants, including 100 men (78.74%) and 27 women (21.26%) participated in this study. The ethnobotanical survey led to the inventory of 41 plant species belonging to 19 botanical families used by herbalists and/or traditional healers and some households to treat infectious diseases, with a specific focus on upper respiratory tract disorders. Among the 41 plant species, the most frequently mentioned in the survey were Guiera senegalensis J.F. Gmel. (95.2%), Combretum glutinosum Perr. Ex DC. (93.9%) and Eucalyptus spp. (82.8%). Combretaceae (30.2%) represented the most cited botanical family with six species, followed by Fabaceae (29.3%, 12 species). A total of 33 crude methanolic extracts of the 24 plant species selected for their number of citations were evaluated in vitro for their antimicrobial and cytotoxic activities. Guiera senegalensis, Combretum glutinosum, Vachellia nilotica subsp. tomentosa (Benth.) Kyal. & Boatwr, Eucalyptus camaldulensis Dehnh., and Terminalia avicennioides Guill. & Perr., showed antibacterial activities. The most active plants against HCoV-229E were: Ficus sycomorus L., Mitragyna inermis (Willd.) Kuntze, Pterocarpus erinaceus Poir., and Spermacoce verticillata L. One of these plants, Mitragyna inermis, was also active against SARS-CoV-2. CONCLUSION This work confirmed the anti-infective properties of plant species traditionally used in Senegal. Overall, the most frequently cited plant species showed the best antibacterial activities. Moreover, some of the selected plant species could be considered as a potential source for the management of coronavirus infections. This new scientific data justified the use of these plants in the management of some infectious pathologies, especially those of the respiratory tract.
Collapse
Affiliation(s)
- Abda Ba
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650, Villeneuve d'Ascq, France; Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et D'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005, Dakar-Fann, Senegal
| | - Vincent Roumy
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650, Villeneuve d'Ascq, France
| | - Malak Al Ibrahim
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650, Villeneuve d'Ascq, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Imelda Raczkiewicz
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650, Villeneuve d'Ascq, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Jennifer Samaillie
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650, Villeneuve d'Ascq, France
| | - Asma Hakem
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650, Villeneuve d'Ascq, France
| | - Sevser Sahpaz
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650, Villeneuve d'Ascq, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - William Diatta
- Laboratoire de Pharmacognosie et Botanique, Faculté de Médecine, de Pharmacie et D'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005, Dakar-Fann, Senegal
| | - Mamadou Sidybé
- Laboratoire de botanique et biodiversité (LBB), Département Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar-Fann, Senegal
| | - Christel Neut
- Univ. Lille, INSERM, CHU Lille, U1286 INFINITE, F-59000, Lille, France
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Matar Seck
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et D'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005, Dakar-Fann, Senegal
| | - Céline Rivière
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650, Villeneuve d'Ascq, France.
| |
Collapse
|
4
|
Schimunek J, Seidl P, Elez K, Hempel T, Le T, Noé F, Olsson S, Raich L, Winter R, Gokcan H, Gusev F, Gutkin EM, Isayev O, Kurnikova MG, Narangoda CH, Zubatyuk R, Bosko IP, Furs KV, Karpenko AD, Kornoushenko YV, Shuldau M, Yushkevich A, Benabderrahmane MB, Bousquet-Melou P, Bureau R, Charton B, Cirou BC, Gil G, Allen WJ, Sirimulla S, Watowich S, Antonopoulos N, Epitropakis N, Krasoulis A, Itsikalis V, Theodorakis S, Kozlovskii I, Maliutin A, Medvedev A, Popov P, Zaretckii M, Eghbal-Zadeh H, Halmich C, Hochreiter S, Mayr A, Ruch P, Widrich M, Berenger F, Kumar A, Yamanishi Y, Zhang KYJ, Bengio E, Bengio Y, Jain MJ, Korablyov M, Liu CH, Marcou G, Glaab E, Barnsley K, Iyengar SM, Ondrechen MJ, Haupt VJ, Kaiser F, Schroeder M, Pugliese L, Albani S, Athanasiou C, Beccari A, Carloni P, D'Arrigo G, Gianquinto E, Goßen J, Hanke A, Joseph BP, Kokh DB, Kovachka S, Manelfi C, Mukherjee G, Muñiz-Chicharro A, Musiani F, Nunes-Alves A, Paiardi G, Rossetti G, Sadiq SK, Spyrakis F, Talarico C, Tsengenes A, Wade RC, Copeland C, Gaiser J, Olson DR, Roy A, Venkatraman V, Wheeler TJ, Arthanari H, Blaschitz K, Cespugli M, Durmaz V, Fackeldey K, Fischer PD, et alSchimunek J, Seidl P, Elez K, Hempel T, Le T, Noé F, Olsson S, Raich L, Winter R, Gokcan H, Gusev F, Gutkin EM, Isayev O, Kurnikova MG, Narangoda CH, Zubatyuk R, Bosko IP, Furs KV, Karpenko AD, Kornoushenko YV, Shuldau M, Yushkevich A, Benabderrahmane MB, Bousquet-Melou P, Bureau R, Charton B, Cirou BC, Gil G, Allen WJ, Sirimulla S, Watowich S, Antonopoulos N, Epitropakis N, Krasoulis A, Itsikalis V, Theodorakis S, Kozlovskii I, Maliutin A, Medvedev A, Popov P, Zaretckii M, Eghbal-Zadeh H, Halmich C, Hochreiter S, Mayr A, Ruch P, Widrich M, Berenger F, Kumar A, Yamanishi Y, Zhang KYJ, Bengio E, Bengio Y, Jain MJ, Korablyov M, Liu CH, Marcou G, Glaab E, Barnsley K, Iyengar SM, Ondrechen MJ, Haupt VJ, Kaiser F, Schroeder M, Pugliese L, Albani S, Athanasiou C, Beccari A, Carloni P, D'Arrigo G, Gianquinto E, Goßen J, Hanke A, Joseph BP, Kokh DB, Kovachka S, Manelfi C, Mukherjee G, Muñiz-Chicharro A, Musiani F, Nunes-Alves A, Paiardi G, Rossetti G, Sadiq SK, Spyrakis F, Talarico C, Tsengenes A, Wade RC, Copeland C, Gaiser J, Olson DR, Roy A, Venkatraman V, Wheeler TJ, Arthanari H, Blaschitz K, Cespugli M, Durmaz V, Fackeldey K, Fischer PD, Gorgulla C, Gruber C, Gruber K, Hetmann M, Kinney JE, Padmanabha Das KM, Pandita S, Singh A, Steinkellner G, Tesseyre G, Wagner G, Wang ZF, Yust RJ, Druzhilovskiy DS, Filimonov DA, Pogodin PV, Poroikov V, Rudik AV, Stolbov LA, Veselovsky AV, De Rosa M, De Simone G, Gulotta MR, Lombino J, Mekni N, Perricone U, Casini A, Embree A, Gordon DB, Lei D, Pratt K, Voigt CA, Chen KY, Jacob Y, Krischuns T, Lafaye P, Zettor A, Rodríguez ML, White KM, Fearon D, Von Delft F, Walsh MA, Horvath D, Brooks CL, Falsafi B, Ford B, García-Sastre A, Yup Lee S, Naffakh N, Varnek A, Klambauer G, Hermans TM. A community effort in SARS-CoV-2 drug discovery. Mol Inform 2024; 43:e202300262. [PMID: 37833243 PMCID: PMC11299051 DOI: 10.1002/minf.202300262] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.
Collapse
|
5
|
Al Ibrahim M, Akissi ZLE, Desmarets L, Lefèvre G, Samaillie J, Raczkiewicz I, Sahpaz S, Dubuisson J, Belouzard S, Rivière C, Séron K. Discovery of Anti-Coronavirus Cinnamoyl Triterpenoids Isolated from Hippophae rhamnoides during a Screening of Halophytes from the North Sea and Channel Coasts in Northern France. Int J Mol Sci 2023; 24:16617. [PMID: 38068938 PMCID: PMC10705938 DOI: 10.3390/ijms242316617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The limited availability of antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred the search for novel antiviral drugs. Here, we investigated the potential antiviral properties of plants adapted to high-salt environments collected in the north of France. Twenty-five crude methanolic extracts obtained from twenty-two plant species were evaluated for their cytotoxicity and antiviral effectiveness against coronaviruses HCoV-229E and SARS-CoV-2. Then, a bioguided fractionation approach was employed. The most active crude methanolic extracts were partitioned into three different sub-extracts. Notably, the dichloromethane sub-extract of the whole plant Hippophae rhamnoides L. demonstrated the highest antiviral activity against both viruses. Its chemical composition was evaluated by ultra-high performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS) and then it was fractionated by centrifugal partition chromatography (CPC). Six cinnamoyl triterpenoid compounds were isolated from the three most active fractions by preparative high-performance liquid chromatography (HPLC) and identified by high resolution MS (HR-MS) and mono- and bi-dimensional nuclear magnetic resonance (NMR). Specifically, these compounds were identified as 2-O-trans-p-coumaroyl-maslinic acid, 3β-hydroxy-2α-trans-p-coumaryloxy-urs-12-en-28-oic acid, 3β-hydroxy-2α-cis-p-coumaryloxy-urs-12-en-28-oic acid, 3-O-trans-caffeoyl oleanolic acid, a mixture of 3-O-trans-caffeoyl oleanolic acid/3-O-cis-caffeoyl oleanolic acid (70/30), and 3-O-trans-p-coumaroyl oleanolic acid. Infection tests demonstrated a dose-dependent inhibition of these triterpenes against HCoV-229E and SARS-CoV-2. Notably, cinnamoyl oleanolic acids displayed activity against both SARS-CoV-2 and HCoV-229E. Our findings suggest that Hippophae rhamnoides could represent a source of potential antiviral agents against coronaviruses.
Collapse
Affiliation(s)
- Malak Al Ibrahim
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Zachee Louis Evariste Akissi
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Lowiese Desmarets
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| | - Gabriel Lefèvre
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Jennifer Samaillie
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Imelda Raczkiewicz
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| | - Sevser Sahpaz
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Jean Dubuisson
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| | - Sandrine Belouzard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| | - Céline Rivière
- BioEcoAgro, Joint Research Unit 1158, University of Lille, INRAE, University of. Liège, UPJV, YNCREA, University of Artois, University Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59650 Villeneuve d’Ascq, France; (Z.L.E.A.); (G.L.); (J.S.); (S.S.)
| | - Karin Séron
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (M.A.I.); (L.D.); (I.R.); (J.D.); (S.B.)
| |
Collapse
|
6
|
Ropponen HK, Diamanti E, Johannsen S, Illarionov B, Hamid R, Jaki M, Sass P, Fischer M, Haupenthal J, Hirsch AKH. Exploring the Translational Gap of a Novel Class of Escherichia coli IspE Inhibitors. ChemMedChem 2023; 18:e202300346. [PMID: 37718320 DOI: 10.1002/cmdc.202300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Discovery of novel antibiotics needs multidisciplinary approaches to gain target enzyme and bacterial activities while aiming for selectivity over mammalian cells. Here, we report a multiparameter optimisation of a fragment-like hit that was identified through a structure-based virtual-screening campaign on Escherichia coli IspE crystal structure. Subsequent medicinal-chemistry design resulted in a novel class of E. coli IspE inhibitors, exhibiting activity also against the more pathogenic bacteria Pseudomonas aeruginosa and Acinetobacter baumannii. While cytotoxicity remains a challenge for the series, it provides new insights on the molecular properties for balancing enzymatic target and bacterial activities simultaneously as well as new starting points for the development of IspE inhibitors with a predicted new mode of action.
Collapse
Affiliation(s)
- Henni-Karoliina Ropponen
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
- Current address: AMR Action Fund GP GmbH, Messeplatz 10, 4058, Basel, Switzerland
| | - Eleonora Diamanti
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Sandra Johannsen
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, Grindelallee 117, 20146, Hamburg, Germany
| | - Rawia Hamid
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Miriam Jaki
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
- Current address: University of Freiburg, Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Sonnenstraße 5, 79104, Freiburg, Germany
| | - Peter Sass
- Interfaculty Institute of Microbiology and Infection Medicine, Universität Tubingen
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, Grindelallee 117, 20146, Hamburg, Germany
| | - Jörg Haupenthal
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
7
|
Desmarets L, Millot M, Chollet-Krugler M, Boustie J, Camuzet C, François N, Rouillé Y, Belouzard S, Tomasi S, Mambu L, Séron K. Lichen or Associated Micro-Organism Compounds Are Active against Human Coronaviruses. Viruses 2023; 15:1859. [PMID: 37766264 PMCID: PMC10536056 DOI: 10.3390/v15091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Since the emergence of SARS-CoV-2, responsible for the COVID-19 pandemic, efforts have been made to identify antiviral compounds against human coronaviruses. With the aim of increasing the diversity of molecule scaffolds, 42 natural compounds, of which 28 were isolated from lichens and 14 from their associated microorganisms (bacteria and fungi), were screened against human coronavirus HCoV-229E. (2) Methods: Antiviral assays were performed using HCoV-229E in Huh-7 and Huh-7/TMPRSS2 cells and SARS-CoV-2 in a Vero-81-derived clone with a GFP reporter probe. (3) Results: Four lichen compounds, including chloroatranol, emodin, perlatolic acid and vulpinic acid, displayed high activities against HCoV-229E (IC50 = 68.86, 59.25, 16.42 and 14.58 μM, respectively) and no toxicity at active concentrations. Kinetics studies were performed to determine their mode of action. The four compounds were active when added at the replication step. Due to their significant activity, they were further tested on SARS-CoV-2. Perlatolic acid was shown to be active against SARS-CoV-2. (4) Conclusions: Taken together, these results show that lichens are a source of interesting antiviral agents against human coronaviruses. Moreover, perlatolic acid might be further studied for its pan-coronavirus antiviral activity.
Collapse
Affiliation(s)
- Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (L.D.); (Y.R.); (S.B.)
| | - Marion Millot
- Univ. Limoges, Laboratoire LABCiS, UR 22722, F-87000 Limoges, France; (M.M.); (L.M.)
| | - Marylène Chollet-Krugler
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, F-35700 Rennes, France; (M.C.-K.); (J.B.); (S.T.)
| | - Joël Boustie
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, F-35700 Rennes, France; (M.C.-K.); (J.B.); (S.T.)
| | - Charline Camuzet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (L.D.); (Y.R.); (S.B.)
| | - Nathan François
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (L.D.); (Y.R.); (S.B.)
| | - Yves Rouillé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (L.D.); (Y.R.); (S.B.)
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (L.D.); (Y.R.); (S.B.)
| | - Sophie Tomasi
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, F-35700 Rennes, France; (M.C.-K.); (J.B.); (S.T.)
| | - Lengo Mambu
- Univ. Limoges, Laboratoire LABCiS, UR 22722, F-87000 Limoges, France; (M.M.); (L.M.)
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR9017—Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France; (L.D.); (Y.R.); (S.B.)
| |
Collapse
|
8
|
Dridi S, Khiari JE, Magna G, Stefanelli M, Lvova L, Mandoj F, Khezami K, Durmuş M, Di Natale C, Paolesse R. Synthesis and Characterization of New-Type Soluble β-Substituted Zinc Phthalocyanine Derivative of Clofoctol. Molecules 2023; 28:molecules28104102. [PMID: 37241842 DOI: 10.3390/molecules28104102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
In this work, we have described the synthesis and characterization of novel zinc (II) phthalocyanine bearing four 2-(2,4-dichloro-benzyl)-4-(1,1,3,3-tetramethyl-butyl)-phenoxy substituents on the peripheral positions. The compound was characterized by elemental analysis and different spectroscopic techniques, such as FT-IR, 1H NMR, MALDI-TOF, and UV-Vis. The Zn (II) phthalocyanine shows excellent solubility in organic solvents such as dichloromethane (DCM), n-hexane, chloroform, tetrahydrofuran (THF), and toluene. Photochemical and electrochemical characterizations of the complex were performed by UV-Vis, fluorescence spectroscopy, and cyclic voltammetry. Its good solubility allows a direct deposition of this compound as film, which has been tested as a solid-state sensing material in gravimetric chemical sensors for gas detection, and the obtained results indicate its potential for qualitative discrimination and quantitative assessment of various volatile organic compounds, among them methanol, n-hexane, triethylamine (TEA), toluene and DCM, in a wide concentration range.
Collapse
Affiliation(s)
- Sabrine Dridi
- Experimental Sciences and Supramolecular Chemistry, Laboratory of Didactic Research, Higher Institute of Education and Continuing Training (ISEFC), University of Tunis El Manar, Tunis 1002, Tunisia
| | - Jamel Eddine Khiari
- Experimental Sciences and Supramolecular Chemistry, Laboratory of Didactic Research, Higher Institute of Education and Continuing Training (ISEFC), University of Carthage, Tunis 1054, Tunisia
| | - Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Larisa Lvova
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Federica Mandoj
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Khaoula Khezami
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
- Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
9
|
Mucke HAM. Drug Repurposing Patent Applications October-December 2022. Assay Drug Dev Technol 2023; 21:80-87. [PMID: 36809110 DOI: 10.1089/adt.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
10
|
Desmarets L, Callens N, Hoffmann E, Danneels A, Lavie M, Couturier C, Dubuisson J, Belouzard S, Rouillé Y. A reporter cell line for the automated quantification of SARS-CoV-2 infection in living cells. Front Microbiol 2022; 13:1031204. [PMID: 36246297 PMCID: PMC9558224 DOI: 10.3389/fmicb.2022.1031204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The SARS-CoV-2 pandemic and the urgent need for massive antiviral testing highlighted the lack of a good cell-based assay that allowed for a fast, automated screening of antivirals in high-throughput content with minimal handling requirements in a BSL-3 environment. The present paper describes the construction of a green fluorescent substrate that, upon cleavage by the SARS-CoV-2 main protease, re-localizes from the cytoplasm in non-infected cells to the nucleus in infected cells. The construction was stably expressed, together with a red fluorescent nuclear marker, in a highly susceptible clone derived from Vero-81 cells. With this fluorescent reporter cell line, named F1G-red, SARS-CoV-2 infection can be scored automatically in living cells by comparing the patterns of green and red fluorescence signals acquired by automated confocal microscopy in a 384-well plate format. We show the F1G-red system is sensitive to several SARS-CoV-2 variants of concern and that it can be used to assess antiviral activities of compounds in dose-response experiments. This high-throughput system will provide a reliable tool for antiviral screening against SARS-CoV-2.
Collapse
Affiliation(s)
- Lowiese Desmarets
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Nathalie Callens
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Eik Hoffmann
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Adeline Danneels
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Muriel Lavie
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Cyril Couturier
- INSERM U1177-Drugs and Molecules for Living Systems, Institut Pasteur Lille, Université de Lille, Lille, France
| | - Jean Dubuisson
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Sandrine Belouzard
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Yves Rouillé
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|