1
|
Jiang M, Laine L, Kolehmainen P, Kakkola L, Avelin V, Väisänen E, Poranen MM, Österlund P, Julkunen I. Virus-specific Dicer-substrate siRNA swarms inhibit SARS-CoV-2 infection in TMPRSS2-expressing Vero E6 cells. Front Microbiol 2024; 15:1432349. [PMID: 39611095 PMCID: PMC11602746 DOI: 10.3389/fmicb.2024.1432349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
After 4 years of the COVID-19 pandemic, SARS-CoV-2 continues to circulate with epidemic waves caused by evolving new variants. Although the rapid development of vaccines and approved antiviral drugs has reduced virus transmission and mitigated the symptoms of infection, the continuous emergence of new variants and the lack of simple-use (non-hospitalized, easy timing, local delivery, direct acting, and host-targeting) treatment modalities have limited the effectiveness of COVID-19 vaccines and drugs. Therefore, novel therapeutic approaches against SARS-CoV-2 infection are still urgently needed. As a positive-sense single-stranded RNA virus, SARS-CoV-2 is highly susceptible to RNA interference (RNAi). Accordingly, small interfering (si)RNAs targeting different regions of SARS-CoV-2 genome can effectively block the expression and replication of the virus. However, the rapid emergence of new SARS-CoV-2 variants with different genomic mutations has led to the problem of viral escape from the targets of RNAi strategy, which has increased the potential of off-target effects by siRNA and decreased the efficacy of long-term use of siRNA treatment. In our study, we enzymatically generated a set of Dicer-substrate (D)siRNA swarms containing DsiRNAs targeting single or multiple conserved sequences of SARS-CoV-2 genome by using in vitro transcription, replication and Dicer digestion system. Pre-transfection of these DsiRNA swarms into Vero E6-TMPRSS2 cells inhibited the replication of several SARS-CoV-2 variants, including the recent Omicron subvariants BQ.1.1 and XBB.1.5. This in vitro investigation of novel DsiRNA swarms provides solid evidence for the feasibility of this new RNAi strategy in the prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Miao Jiang
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Larissa Laine
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Kolehmainen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Kakkola
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology Unit, Turku University Central Hospital, Turku, Finland
| | - Veera Avelin
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Elina Väisänen
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology Unit, Turku University Central Hospital, Turku, Finland
| |
Collapse
|
2
|
Musa M, Enaholo E, Aluyi-Osa G, Atuanya GN, Spadea L, Salati C, Zeppieri M. Herpes simplex keratitis: A brief clinical overview. World J Virol 2024; 13:89934. [PMID: 38616855 PMCID: PMC11008405 DOI: 10.5501/wjv.v13.i1.89934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024] Open
Abstract
The aim of our minireview is to provide a brief overview of the diagnosis, clinical aspects, treatment options, management, and current literature available regarding herpes simplex keratitis (HSK). This type of corneal viral infection is caused by the herpes simplex virus (HSV), which can affect several tissues, including the cornea. One significant aspect of HSK is its potential to cause recurrent episodes of inflammation and damage to the cornea. After the initial infection, the HSV can establish a latent infection in the trigeminal ganglion, a nerve cluster near the eye. The virus may remain dormant for extended periods. Periodic reactivation of the virus can occur, leading to recurrent episodes of HSK. Factors triggering reactivation include stress, illness, immunosuppression, or trauma. Recurrent episodes can manifest in different clinical patterns, ranging from mild epithelial involvement to more severe stromal or endothelial disease. The severity and frequency of recurrences vary among individuals. Severe cases of HSK, especially those involving the stroma and leading to scarring, can result in vision impairment or even blindness in extreme cases. The cornea's clarity is crucial for good vision, and scarring can compromise this, potentially leading to visual impairment. The management of HSK involves not only treating acute episodes but also implementing long-term strategies to prevent recurrences and attempt repairs of corneal nerve endings via neurotization. Antiviral medications, such as oral Acyclovir or topical Ganciclovir, may be prescribed for prophylaxis. The immune response to the virus can contribute to corneal damage. Inflammation, caused by the body's attempt to control the infection, may inadvertently harm the corneal tissues. Clinicians should be informed about triggers and advised on measures to minimize the risk of reactivation. In summary, the recurrent nature of HSK underscores the importance of both acute and long-term management strategies to preserve corneal health and maintain optimal visual function.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
3
|
Levanova AA, Poranen MM. Utilization of Bacteriophage phi6 for the Production of High-Quality Double-Stranded RNA Molecules. Viruses 2024; 16:166. [PMID: 38275976 PMCID: PMC10818839 DOI: 10.3390/v16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Double-stranded RNA (dsRNA) molecules are mediators of RNA interference (RNAi) in eukaryotic cells. RNAi is a conserved mechanism of post-transcriptional silencing of genes cognate to the sequences of the applied dsRNA. RNAi-based therapeutics for the treatment of rare hereditary diseases have recently emerged, and the first sprayable dsRNA biopesticide has been proposed for registration. The range of applications of dsRNA molecules will likely expand in the future. Therefore, cost-effective methods for the efficient large-scale production of high-quality dsRNA are in demand. Conventional approaches to dsRNA production rely on the chemical or enzymatic synthesis of single-stranded (ss)RNA molecules with a subsequent hybridization of complementary strands. However, the yield of properly annealed biologically active dsRNA molecules is low. As an alternative approach, we have developed methods based on components derived from bacteriophage phi6, a dsRNA virus encoding RNA-dependent RNA polymerase (RdRp). Phi6 RdRp can be harnessed for the enzymatic production of high-quality dsRNA molecules. The isolated RdRp efficiently synthesizes dsRNA in vitro on a heterologous ssRNA template of any length and sequence. To scale up dsRNA production, we have developed an in vivo system where phi6 polymerase complexes produce target dsRNA molecules inside Pseudomonas cells.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | | |
Collapse
|
4
|
Mäntynen S, Salomaa MM, Poranen MM. Diversity and Current Classification of dsRNA Bacteriophages. Viruses 2023; 15:2154. [PMID: 38005832 PMCID: PMC10674327 DOI: 10.3390/v15112154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Half a century has passed since the discovery of Pseudomonas phage phi6, the first enveloped dsRNA bacteriophage to be isolated. It remained the sole known dsRNA phage for a quarter of a century and the only recognised member of the Cystoviridae family until the year 2018. After the initial discovery of phi6, additional dsRNA phages have been isolated from globally distant locations and identified in metatranscriptomic datasets, suggesting that this virus type is more ubiquitous in nature than previously acknowledged. Most identified dsRNA phages infect Pseudomonas strains and utilise either pilus or lipopolysaccharide components of the host as the primary receptor. In addition to the receptor-mediated strictly lytic lifestyle, an alternative persistent infection strategy has been described for some dsRNA phages. To date, complete genome sequences of fourteen dsRNA phage isolates are available. Despite the high sequence diversity, similar sets of genes can typically be found in the genomes of dsRNA phages, suggesting shared evolutionary trajectories. This review provides a brief overview of the recognised members of the Cystoviridae virus family and related dsRNA phage isolates, outlines the current classification of dsRNA phages, and discusses their relationships with eukaryotic RNA viruses.
Collapse
Affiliation(s)
- Sari Mäntynen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland; (M.M.S.); (M.M.P.)
| | | | | |
Collapse
|
5
|
Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci 2023; 30:88. [PMID: 37845731 PMCID: PMC10577957 DOI: 10.1186/s12929-023-00981-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.
Collapse
Affiliation(s)
- Hara Kang
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Yun Ji Ga
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Soo Hyun Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Young Hoon Cho
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung Won Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Chaeyeon Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Research Institute for New Drug Development, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- KU Center for Animal Blood Medical Science, College of Veterinary Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, South Korea.
| |
Collapse
|
6
|
Lasanen T, Frejborg F, Lund LM, Nyman MC, Orpana J, Habib H, Alaollitervo S, Levanova AA, Poranen MM, Hukkanen V, Kalke K. Single therapeutic dose of an antiviral UL29 siRNA swarm diminishes symptoms and viral load of mice infected intranasally with HSV-1. SMART MEDICINE 2023; 2:e20230009. [PMID: 39188276 PMCID: PMC11235724 DOI: 10.1002/smmd.20230009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 08/28/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a human pathogen that causes recurrent infections. Acyclovir-resistant strains exist and can cause severe complications, which are potentially untreatable with current therapies. We have developed siRNA swarms that target a 653 base pair long region of the essential HSV gene UL29. As per our previous results, the anti-UL29 siRNA swarm effectively inhibits the replication of circulating HSV strains and acyclovir-resistant HSV strains in vitro, while displaying a good safety profile. We investigated a single intranasal therapeutic dose of a siRNA swarm in mice, which were first inoculated intranasally with HSV-1 and given treatment 4 h later. We utilized a luciferase-expressing HSV-1 strain, which enabled daily follow-up of infection with in vivo imaging. Our results show that a single dose of a UL29-targeted siRNA swarm can inhibit the replication of HSV-1 in orofacial tissue, which was reflected in ex vivo HSV titers and HSV DNA copy numbers as well as by a decrease in a luciferase-derived signal. Furthermore, the treatment had a tendency to protect mice from severe clinical symptoms and delay the onset of the symptoms. These results support the development of antiviral siRNA swarms as a novel treatment for HSV-1 infections.
Collapse
Affiliation(s)
- Tuomas Lasanen
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Fanny Frejborg
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
- Faculty of Science and EngineeringPharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Liisa M. Lund
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Marie C. Nyman
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Julius Orpana
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Huda Habib
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Salla Alaollitervo
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Alesia A. Levanova
- Molecular and Integrative Biosciences Research ProgrammeBiological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research ProgrammeBiological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Veijo Hukkanen
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Kiira Kalke
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
7
|
Schmitz Y, Schwerdtfeger M, Westmeier J, Littwitz-Salomon E, Alt M, Brochhagen L, Krawczyk A, Sutter K. Superior antiviral activity of IFNβ in genital HSV-1 infection. Front Cell Infect Microbiol 2022; 12:949036. [PMID: 36325470 PMCID: PMC9618724 DOI: 10.3389/fcimb.2022.949036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Type I interferons (IFNs) present the first line of defense against viral infections, providing antiviral, immunomodulatory and antiproliferative effects. The type I IFN family contains 12 IFNα subtypes and IFNβ, and although they share the same receptor, they are classified as non-redundant, capable to induce a variety of different IFN-stimulated genes. However, the biological impact of individual subtypes remains controversial. Recent data propose a subtype-specificity of type I IFNs revealing unique effector functions for different viruses and thus expanding the implications for IFNα-based antiviral immunotherapies. Despite extensive research, drug-resistant infections with herpes simplex virus type 1 (HSV-1), which is the common agent of recurrent orogenital lesions, are still lacking a protective or curing therapeutic. However, due to the risk of generalized infections in immunocompromised hosts as well as the increasing incidence of resistance to conventional antiherpetic agents, HSV infections raise major health concerns. Based on their pleiotropic effector functions, the application of type I IFNs represents a promising approach to inhibit HSV-1 replication, to improve host immunity and to further elucidate their qualitative differences. Here, selective IFNα subtypes and IFNβ were evaluated for their therapeutic potential in genital HSV-1 infections. Respective in vivo studies in mice revealed subtype-specific differences in the reduction of local viral loads. IFNβ had the strongest antiviral efficacy against genital HSV-1 infection in mice, whereas IFNα1, IFNα4, and IFNα11 had no impact on viral loads. Based on flow cytometric analyses of underlying immune responses at local and peripheral sites, these differences could be further assigned to specific modulations of the antiviral immunity early during HSV-1 infection. IFNβ led to enhanced systemic cytokine secretion and elevated cytotoxic responses, which negatively correlated with viral loads in the vaginal tract. These data provide further insights into the diversity of type I IFN effector functions and their impact on the immunological control of HSV-1 infections.
Collapse
Affiliation(s)
- Yasmin Schmitz
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Mara Schwerdtfeger
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Jaana Westmeier
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, Essen, Germany
| | - Leonie Brochhagen
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, Essen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Kathrin Sutter,
| |
Collapse
|