1
|
Liu J, Wang J, Zhang Z, Bai Q, Pan X, Chen R, Yao H, Yu Y, Ma J. Streptococcus suis Deploys Multiple ATP-Dependent Proteases for Heat Stress Adaptation. J Basic Microbiol 2024; 64:e2400030. [PMID: 39031597 DOI: 10.1002/jobm.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Streptococcus suis is an important zoonotic pathogen, causing cytokine storms of Streptococcal toxic shock-like syndrome amongst humans after a wound infection into the bloodstream. To overcome the challenges of fever and leukocyte recruitment, invasive S. suis must deploy multiple stress responses forming a network and utilize proteases to degrade short-lived regulatory and misfolded proteins induced by adverse stresses, thereby adapting and evading host immune responses. In this study, we found that S. suis encodes multiple ATP-dependent proteases, including single-chain FtsH and double-subunit Clp protease complexes ClpAP, ClpBP, ClpCP, and ClpXP, which were activated as the fever of infected mice in vivo. The expression of genes ftsH, clpA/B/C, and clpP, but not clpX, were significantly upregulated in S. suis in response to heat stress, while were not changed notably under the treatments with several other stresses, including oxidative, acidic, and cold stimulation. FtsH and ClpP were required for S. suis survival within host blood under heat stress in vitro and in vivo. Deletion of ftsH or clpP attenuated the tolerance of S. suis to heat, oxidative and acidic stresses, and significantly impaired the bacterial survival within macrophages. Further analysis identified that repressor CtsR directly binds and controls the clpA/B/C and clpP operons and is relieved by heat stress. In summary, the deployments of multiple ATP-dependent proteases form a flexible heat stress response network that appears to allow S. suis to fine-tune the degradation or refolding of the misfolded proteins to maintain cellular homeostasis and optimal survival during infection.
Collapse
Affiliation(s)
- Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Jianzhong Wang
- Suzhou Xiangcheng Fisheries Technology Promotion Center, Suzhou Animal Disease Prevention and Control Center, Suzhou, China
| | - Zhen Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Rong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Yong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Gu Q, Zhu X, Yu Y, Jiang T, Pan Z, Ma J, Yao H. Type II and IV toxin-antitoxin systems coordinately stabilize the integrative and conjugative element of the ICESa2603 family conferring multiple drug resistance in Streptococcus suis. PLoS Pathog 2024; 20:e1012169. [PMID: 38640137 PMCID: PMC11062541 DOI: 10.1371/journal.ppat.1012169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/01/2024] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
Integrative and conjugative elements (ICEs) play a vital role in bacterial evolution by carrying essential genes that confer adaptive functions to the host. Despite their importance, the mechanism underlying the stable inheritance of ICEs, which is necessary for the acquisition of new traits in bacteria, remains poorly understood. Here, we identified SezAT, a type II toxin-antitoxin (TA) system, and AbiE, a type IV TA system encoded within the ICESsuHN105, coordinately promote ICE stabilization and mediate multidrug resistance in Streptococcus suis. Deletion of SezAT or AbiE did not affect the strain's antibiotic susceptibility, but their duple deletion increased susceptibility, mainly mediated by the antitoxins SezA and AbiEi. Further studies have revealed that SezA and AbiEi affect the genetic stability of ICESsuHN105 by moderating the excision and extrachromosomal copy number, consequently affecting the antibiotic resistance conferred by ICE. The DNA-binding proteins AbiEi and SezA, which bind palindromic sequences in the promoter, coordinately modulate ICE excision and extracellular copy number by binding to sequences in the origin-of-transfer (oriT) and the attL sites, respectively. Furthermore, AbiEi negatively regulates the transcription of SezAT by binding directly to its promoter, optimizing the coordinate network of SezAT and AbiE in maintaining ICESsuHN105 stability. Importantly, SezAT and AbiE are widespread and conserved in ICEs harbouring diverse drug-resistance genes, and their coordinated effects in promoting ICE stability and mediating drug resistance may be broadly applicable to other ICEs. Altogether, our study uncovers the TA system's role in maintaining the genetic stability of ICE and offers potential targets for overcoming the dissemination and evolution of drug resistance.
Collapse
Affiliation(s)
- Qibing Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Xiayu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Yong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Tao Jiang
- Department of Stomatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
3
|
Gao M, Zuo J, Shen Y, Yuan S, Gao S, Wang Y, Wang Y, Yi L. Modeling Co-Infection by Streptococcus suis and Haemophilus parasuis Reveals Influences on Biofilm Formation and Host Response. Animals (Basel) 2023; 13:ani13091511. [PMID: 37174548 PMCID: PMC10177019 DOI: 10.3390/ani13091511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Streptococcus suis (S. suis) and Haemophilus parasuis (H. parasuis) are two primary pathogens currently affecting the porcine industry. They often cause encephalitis and arthritis. They also frequently co-infect in clinical settings. In the current study, we identified significant correlations between S. suis and H. parasuis. The results from CI versus RIR suggested that S. suis and H. parasuis were competitive in general. Compared to mono-species biofilm, the biomass, bio-volume, and thickness of mixed-species biofilms were significantly higher, which was confirmed using crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy. Compared to mono-species biofilm, the viable bacteria in the mixed-species biofilms were significantly lower, which was confirmed using the enumeration of colony-forming units (CFU cm-2). The susceptibility of antibiotics in the co-culture decreased in the planktonic state. In contrast, biofilm state bacteria are significantly more difficult to eradicate with antibiotics than in a planktonic state. Whether in planktonic or biofilm state, the expression of virulence genes of S. suis and H. parasuis in mixed culture was very different from that in single culture. Subsequently, by establishing a mixed infection model in mice, we found that the colonization of the two pathogens in organs increased after mixed infection, and altered the host's inflammatory response. In summary, our results indicate that S. suis and H. parasuis compete when co-cultured in vitro. Surprisingly, S. suis and H. parasuis synergistically increased colonization capacity after co-infection in vivo. This study elucidated the interaction between S. suis and H. parasuis during single infections and co-infections. Future studies on bacterial disease control and antibiotic treatment should consider the interaction of mixed species.
Collapse
Affiliation(s)
- Mengxia Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471000, China
- College of Life Science, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|