1
|
Waheed I, Sikandri T, Zaheen S, Khakwani MMAK, An Z, Liu T, Zhu C, Wei J. Evaluating the Molecular Interactions between Type 2 Diabetes Mellitus and Parkinson's Disease: Role of Antidiabetic Drugs as Promising Therapeutics. ACS Chem Neurosci 2025; 16:988-999. [PMID: 40042145 DOI: 10.1021/acschemneuro.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Evidence from previous research demonstrates a relationship between diabetes mellitus (DM) and Parkinson's disease (PD). T2DM is associated with chronic glucose dysregulation, as an etiological factor. It inhibits neuronal function through disrupted insulin signaling and oxidative stress, which ultimately lead to the loss of dopaminergic neurons in the substantia nigra (SN). Interactions between T2DM and PD were analyzed by gene expression, coexpression, and gene set enrichment via NCBI and STRING databases following pathways like KEGG and Reactome. The study identified nine key gene interactions through published literature on different databases and search engines that are involved in the progression of these chronic diseases. Furthermore, some genetic and nongenetic risk factors, gene mutations and environmental factors, are also involved in the progression of T2DM and PD. This review highlights the limitations of currently available drug treatments for these diseases and examines modern therapeutic approaches to address neurodegenerative and metabolic abnormalities. We critically assess the current experimental methodologies aimed at unraveling the pathophysiological mechanisms linking PD and T2DM while addressing the key challenges impeding a comprehensive understanding of the concurrent emergence of these debilitating age-related conditions.
Collapse
Affiliation(s)
- Irum Waheed
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Talal Sikandri
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Sumbal Zaheen
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | | | - Zhaowu An
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Al Bekai E, Beaini CE, Kalout K, Safieddine O, Semaan S, Sahyoun F, Ghadieh HE, Azar S, Kanaan A, Harb F. The Hidden Impact of Gestational Diabetes: Unveiling Offspring Complications and Long-Term Effects. Life (Basel) 2025; 15:440. [PMID: 40141785 PMCID: PMC11944258 DOI: 10.3390/life15030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM), characterized by gestational hyperglycemia due to insufficient insulin response, poses significant risks to both maternal and offspring health. Fetal exposure to maternal hyperglycemia leads to short-term complications such as macrosomia and neonatal hypoglycemia and long-term risks including obesity, metabolic syndrome, cardiovascular dysfunction, and type 2 diabetes. The Developmental Origins of Health and Disease (DOHaD) theory explains how maternal hyperglycemia alters fetal programming, increasing susceptibility to metabolic disorders later in life. OBJECTIVE This review explores the intergenerational impact of GDM, linking maternal hyperglycemia to lifelong metabolic, cardiovascular, and neurodevelopmental risks via epigenetic and microbiome alterations. It integrates the most recent findings, contrasts diagnostic methods, and offers clinical strategies for early intervention and prevention. METHODS A comprehensive literature search was conducted in PubMed, Scopus, and ScienceDirect to identify relevant studies published between 1 January 2000 and 31 December 2024. The search included studies focusing on the metabolic and developmental consequences of GDM exposure in offspring, as well as potential mechanisms such as epigenetic alterations and gut microbiota dysbiosis. Studies examining preventive strategies and management approaches were also included. KEY FINDINGS Maternal hyperglycemia leads to long-term metabolic changes in offspring, with epigenetic modifications and gut microbiota alterations playing key roles. GDM-exposed children face increased risks of obesity, glucose intolerance, and cardiovascular diseases. Early screening and monitoring are crucial for risk reduction. PRACTICAL IMPLICATIONS Understanding the intergenerational effects of GDM has important clinical implications for prenatal and postnatal care. Early detection, lifestyle interventions, and targeted postnatal surveillance are essential for reducing long-term health risks in offspring. These findings emphasize the importance of comprehensive maternal healthcare strategies to improve long-term outcomes for both mothers and their children.
Collapse
Affiliation(s)
- Elsa Al Bekai
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Carla El Beaini
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Karim Kalout
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Ouhaila Safieddine
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Sandra Semaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - François Sahyoun
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
- Family & Geriatric Medicine, Centre Hospitalier du Nord–CHN, Zgharta P.O. Box 100, Lebanon
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon (H.E.G.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon
| |
Collapse
|
3
|
Wachowski NA, Pippin JA, Boehm K, Lu S, Leonard ME, Manduchi E, Parlin UW, Wabitsch M, Chesi A, Wells AD, Grant SFA, Pahl MC. Implicating type 2 diabetes effector genes in relevant metabolic cellular models using promoter-focused Capture-C. Diabetologia 2024; 67:2740-2753. [PMID: 39240351 PMCID: PMC11604697 DOI: 10.1007/s00125-024-06261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 09/07/2024]
Abstract
AIMS/HYPOTHESIS Genome-wide association studies (GWAS) have identified hundreds of type 2 diabetes loci, with the vast majority of signals located in non-coding regions; as a consequence, it remains largely unclear which 'effector' genes these variants influence. Determining these effector genes has been hampered by the relatively challenging cellular settings in which they are hypothesised to confer their effects. METHODS To implicate such effector genes, we elected to generate and integrate high-resolution promoter-focused Capture-C, assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq datasets to characterise chromatin and expression profiles in multiple cell lines relevant to type 2 diabetes for subsequent functional follow-up analyses: EndoC-BH1 (pancreatic beta cell), HepG2 (hepatocyte) and Simpson-Golabi-Behmel syndrome (SGBS; adipocyte). RESULTS The subsequent variant-to-gene analysis implicated 810 candidate effector genes at 370 type 2 diabetes risk loci. Using partitioned linkage disequilibrium score regression, we observed enrichment for type 2 diabetes and fasting glucose GWAS loci in promoter-connected putative cis-regulatory elements in EndoC-BH1 cells as well as fasting insulin GWAS loci in SGBS cells. Moreover, as a proof of principle, when we knocked down expression of the SMCO4 gene in EndoC-BH1 cells, we observed a statistically significant increase in insulin secretion. CONCLUSIONS/INTERPRETATION These results provide a resource for comparing tissue-specific data in tractable cellular models as opposed to relatively challenging primary cell settings. DATA AVAILABILITY Raw and processed next-generation sequencing data for EndoC-BH1, HepG2, SGBS_undiff and SGBS_diff cells are deposited in GEO under the Superseries accession GSE262484. Promoter-focused Capture-C data are deposited under accession GSE262496. Hi-C data are deposited under accession GSE262481. Bulk ATAC-seq data are deposited under accession GSE262479. Bulk RNA-seq data are deposited under accession GSE262480.
Collapse
Affiliation(s)
- Nicholas A Wachowski
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ursula W Parlin
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
4
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Goyal S, Rani J, Bhat MA, Vanita V. Genetics of diabetes. World J Diabetes 2023; 14:656-679. [PMID: 37383588 PMCID: PMC10294065 DOI: 10.4239/wjd.v14.i6.656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes mellitus is a complicated disease characterized by a complex interplay of genetic, epigenetic, and environmental variables. It is one of the world's fastest-growing diseases, with 783 million adults expected to be affected by 2045. Devastating macrovascular consequences (cerebrovascular disease, cardiovascular disease, and peripheral vascular disease) and microvascular complications (like retinopathy, nephropathy, and neuropathy) increase mortality, blindness, kidney failure, and overall quality of life in individuals with diabetes. Clinical risk factors and glycemic management alone cannot predict the development of vascular problems; multiple genetic investigations have revealed a clear hereditary component to both diabetes and its related complications. In the twenty-first century, technological advancements (genome-wide association studies, next-generation sequencing, and exome-sequencing) have led to the identification of genetic variants associated with diabetes, however, these variants can only explain a small proportion of the total heritability of the condition. In this review, we address some of the likely explanations for this "missing heritability", for diabetes such as the significance of uncommon variants, gene-environment interactions, and epigenetics. Current discoveries clinical value, management of diabetes, and future research directions are also discussed.
Collapse
Affiliation(s)
- Shiwali Goyal
- Department of Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Rockville, MD 20852, United States
| | - Jyoti Rani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Mohd Akbar Bhat
- Department of Ophthalmology, Georgetown University Medical Center, Washington DC, DC 20057, United States
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
6
|
Salah Hasan N, Gamal El Dine H, Ahmed Kamel S, Hamed M, Youssef RN, Mahmoud Hassan E, Ibrahim Musa N, Ali A, Awadallah E. Association of Genetic and Epigenetic changes of Insulin Like Growth Factor Binding Protein-1 in Egyptian Patients with Type 2 Diabetes Mellitus. Diabetes Res Clin Pract 2023; 200:110677. [PMID: 37088243 DOI: 10.1016/j.diabres.2023.110677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Diabetes is one of the global health threat. Type 2 Diabetes mellitus (T2DM) is associated with life-threatening complications. This work, aimed to study the association between T2DM and IGFBP-1 gene methylation, gene polymorphism and serum levels of IGFBP-1. METHOD We included 100 subjects with T2DM and 100 control. DNA methylation of IGFBP-1 was analyzed using pyrosequencing, IGFBP-1 gene polymorphism was analyzed using real time polymerase chain reaction and serum level of IGFBP-1 was measured by ELISA. RESULTS There was DNA hyper methylation levels of IGFBP1 gene at each of the six CpG sites in T2DM patients than control (P < 0.001). IGFBP-1 gene polymorphism (rs 2854843) CC pattern was significantly associated with DM, P = 0.002. Also, there was decrease in serum IGFBP-1 in patients with T2DM than control group (P < 0.001). CONCLUSION We concluded that DNA hyper methylation of IGFBP-1 gene and CC polymorphism (rs 2854843) of IGFBP-1 gene are associated with T2DM in Egyptian patients, also, decrease serum level of IGFBP-1. Further cohort study is recommended with large sample size to detect which one, epigenetic changes or polymorphism of IGFBP-1 gene, is the cause of T2DM or even both.
Collapse
Affiliation(s)
- Nehal Salah Hasan
- Department of Clinical and Chemical Pathology, National Research Centre (NRC), Cairo, Egypt
| | - Hesham Gamal El Dine
- Department of Clinical and Chemical Pathology, National Research Centre (NRC), Cairo, Egypt
| | - Solaf Ahmed Kamel
- Department of Clinical and Chemical Pathology, National Research Centre (NRC), Cairo, Egypt
| | - Mona Hamed
- Department of Clinical and Chemical Pathology, National Research Centre (NRC), Cairo, Egypt
| | - Rasha N Youssef
- Department of Clinical and Chemical Pathology, National Research Centre (NRC), Cairo, Egypt
| | - Eman Mahmoud Hassan
- Department of Clinical and Chemical Pathology, National Research Centre (NRC), Cairo, Egypt.
| | | | - Asmaa Ali
- Department of pulmonary medicine, Abbassia Chest hospital, Ministry of health, Cairo, Egypt; Department of laboratory medicine, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Eman Awadallah
- Department of Clinical and Chemical Pathology, National Research Centre (NRC), Cairo, Egypt
| |
Collapse
|
7
|
Arab MM, Elsewy FZ, Badrah MH, Fathalla RM, Abdou MS, Kassab HS. Screening for diabetes in the adult population above the age of 20 years among inhabitants of rural agricultural and rural desert areas of Egypt. Acta Diabetol 2023; 60:203-210. [PMID: 36305978 DOI: 10.1007/s00592-022-01966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/29/2022] [Indexed: 01/24/2023]
Abstract
AIMS The present study focused on identifying the current prevalence of diabetes mellitus (DM) in rural desert and rural agricultural areas of Egypt and comparing these findings to those of previous studies that reported lower prevalence rates of DM in rural desert versus rural agricultural areas. METHODS The study included a total of 15,000 participants aged 20 years or older; 10,000 were from rural agricultural areas and 5000 were from rural desert areas in Egypt. The prevalence of DM and impaired fasting glucose for each group was recorded, participants were interviewed, medical history was obtained, physical examinations were performed, and fasting plasma glucose was used for diagnosis of DM and IFG using American Diabetes Association criteria. RESULTS The prevalence of DM was 12.7% in agricultural areas and 4.7% in desert areas. The prevalence of newly diagnosed cases was 15.8% and 9.9% in agricultural and desert areas, respectively. The prevalence of IFG was 11.14% in agricultural and 8.04% in desert areas. These results suggest that living in a rural area makes patients at a higher risk of developing DM (OR = 2.968 CI (2.570-3.428) p < 0.001) and IFG (OR = 1.43, CI (1.272-1.616), p < 0.001). Logistic regression analysis revealed that increased age, living in agricultural areas, higher body mass index and positive family history of diabetes were the significant predictors affecting the prevalence of DM. CONCLUSIONS The prevalence of DM, IFG, and overall dysglycemia (DM + IFG) in Egypt has generally increased in rural areas, with a lower prevalence in rural desert compared to rural agricultural areas.
Collapse
Affiliation(s)
- Morsi M Arab
- Diabetes & Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, 17 Champollion Street, El Messallah, Alexandria, 21131, Egypt
| | - Fathy Z Elsewy
- Diabetes & Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, 17 Champollion Street, El Messallah, Alexandria, 21131, Egypt
| | - Mai H Badrah
- Diabetes & Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, 17 Champollion Street, El Messallah, Alexandria, 21131, Egypt
| | - Reem M Fathalla
- Diabetes & Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, 17 Champollion Street, El Messallah, Alexandria, 21131, Egypt
| | - Marwa S Abdou
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S Kassab
- Diabetes & Metabolism Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, 17 Champollion Street, El Messallah, Alexandria, 21131, Egypt.
| |
Collapse
|
8
|
Memon AA, Vats S, Sundquist J, Li Y, Sundquist K. Mitochondrial DNA Copy Number: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1168-1190. [PMID: 36169625 DOI: 10.1089/ars.2022.0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent Advances: Various studies have suggested that mitochondrial DNA copy number (mtDNA-CN), a surrogate biomarker of mitochondrial dysfunction, is an easily quantifiable biomarker for chronic diseases, including diabetes and cancer. However, current knowledge is limited, and the results are controversial. This has been attributed mainly to methodology and study design. Critical Issues: The incidence of diabetes and cancer has increased significantly in recent years. Moreover, type 2 diabetes (T2D) has been shown to be a risk factor for cancer. mtDNA-CN has been associated with both T2D and cancer. However, it is not known whether mtDNA-CN plays any role in the association between T2D and cancer. Significance: In this review, we have discussed mtDNA-CN in diabetes and cancer, and reviewed the literature and methodology used in published studies so far. Based on the literature review, we have speculated how mtDNA-CN may act as a link between diabetes and cancer. Furthermore, we have provided some recommendations for reliable translation of mtDNA-CN as a biomarker. Future Directions: Further research is required to elucidate the role of mtDNA-CN in the association between T2D and cancer. If established, early lifestyle interventions, such as physical activity and diet control that improve mitochondrial function, may help preventing cancer in patients with T2D. Antioxid. Redox Signal. 37, 1168-1190.
Collapse
Affiliation(s)
- Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Sakshi Vats
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Yanni Li
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
9
|
A Comprehensive Review of the Evolution of Insulin Development and Its Delivery Method. Pharmaceutics 2022; 14:pharmaceutics14071406. [PMID: 35890301 PMCID: PMC9320488 DOI: 10.3390/pharmaceutics14071406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
The year 2021 marks the 100th anniversary of the momentous discovery of insulin. Through years of research and discovery, insulin has evolved from poorly defined crude extracts of animal pancreas to recombinant human insulin and analogues that can be prescribed and administered with high accuracy and efficacy. However, there are still many challenges ahead in clinical settings, particularly with respect to maintaining optimal glycemic control whilst minimizing the treatment-related side effects of hypoglycemia and weight gain. In this review, the chronology of the development of rapid-acting, short-acting, intermediate-acting, and long-acting insulin analogues, as well as mixtures and concentrated formulations that offer the potential to meet this challenge, are summarized. In addition, we also summarize the latest advancements in insulin delivery methods, along with advancement to clinical trials. This review provides insights on the development of insulin treatment for diabetes mellitus that may be useful for clinicians in meeting the needs of their individual patients. However, it is important to note that as of now, none of the new technologies mentioned have superseded the existing method of subcutaneous administration of insulin.
Collapse
|
10
|
Yang Y, Luan Y, Feng Q, Chen X, Qin B, Ren KD, Luan Y. Epigenetics and Beyond: Targeting Histone Methylation to Treat Type 2 Diabetes Mellitus. Front Pharmacol 2022; 12:807413. [PMID: 35087408 PMCID: PMC8788853 DOI: 10.3389/fphar.2021.807413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus is a global public health challenge with high morbidity. Type 2 diabetes mellitus (T2DM) accounts for 90% of the global prevalence of diabetes. T2DM is featured by a combination of defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. However, the pathogenesis of this disease is complicated by genetic and environmental factors, which needs further study. Numerous studies have demonstrated an epigenetic influence on the course of this disease via altering the expression of downstream diabetes-related proteins. Further studies in the field of epigenetics can help to elucidate the mechanisms and identify appropriate treatments. Histone methylation is defined as a common histone mark by adding a methyl group (-CH3) onto a lysine or arginine residue, which can alter the expression of downstream proteins and affect cellular processes. Thus, in tthis study will discuss types and functions of histone methylation and its role in T2DM wilsed. We will review the involvement of histone methyltransferases and histone demethylases in the progression of T2DM and analyze epigenetic-based therapies. We will also discuss the potential application of histone methylation modification as targets for the treatment of T2DM.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Qin
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Hafez SM, Abou-youssef HES, Awad MAK, Kamel SA, Youssef RN, Elshiekh SM, Raslan H, Salah N. Insulin-like growth factor binding protein 1 DNA methylation in type 2 diabetes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Type 2 diabetes (T2D) is a complex trait in humans. Several environmental and hereditary factors contribute to the overall pathogenesis of this disease. The association between genes, environment, and T2D was unknown for decades until epigenetics was discovered. Epigenetics affects gene transcription, which, in turn, influences organ function. One of the epigenetic regulatory mechanisms is DNA methylation. This mechanism permits modification of gene function without changes in the DNA sequence.
There are several risk factors for type 2 diabetes such as harmful intrauterine environment, obesity, poor physical activity, increasing age, a family history of the disease, and an unhealthy diet. All these factors have been proven to influence the DNA methylation sequence in target tissues for insulin resistance in humans. We aimed to evaluate insulin-like growth factor binding protein-1 (IGFBP1) gene methylation levels in T2D. In all, 100 Egyptian individuals were included in this study: 50 patients with T2D versus 50 healthy controls. Genomic DNA was extracted from peripheral blood and IGFBP1 methylation levels were analyzed using pyrosequencing.
Results
DNA methylation levels in the IGFBP1 gene at each of the six CpG sites were significantly higher in the T2D patients than in the controls at P values of 0.001, 0.002, 0.010, 0.007, 0.014, and 0.001, respectively.
Conclusion
According to this study, T2D is due to interactions between genetics, epigenetics, and lifestyle. This study also revealed that DNA methylation levels of the IGFBP-1 gene are higher in T2D patients than in healthy control.
Collapse
|
12
|
Reed J, Bain S, Kanamarlapudi V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab Syndr Obes 2021; 14:3567-3602. [PMID: 34413662 PMCID: PMC8369920 DOI: 10.2147/dmso.s319895] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D), which has currently become a global pandemic, is a metabolic disease largely characterised by impaired insulin secretion and action. Significant progress has been made in understanding T2D aetiology and pathogenesis, which is discussed in this review. Extrapancreatic pathology is also summarised, which demonstrates the highly multifactorial nature of T2D. Glucagon-like peptide (GLP)-1 is an incretin hormone responsible for augmenting insulin secretion from pancreatic beta-cells during the postprandial period. Given that native GLP-1 has a very short half-life, GLP-1 mimetics with a much longer half-life have been developed, which are currently an effective treatment option for T2D by enhancing insulin secretion in patients. Interestingly, there is continual emerging evidence that these therapies alleviate some of the post-diagnosis complications of T2D. Additionally, these therapies have been shown to induce weight loss in patients, suggesting they could be an alternative to bariatric surgery, a procedure associated with numerous complications. Current GLP-1-based therapies all act as orthosteric agonists for the GLP-1 receptor (GLP-1R). Interestingly, it has emerged that GLP-1R also has allosteric binding sites and agonists have been developed for these sites to test their therapeutic potential. Recent studies have also demonstrated the potential of bi- and tri-agonists, which target multiple hormonal receptors including GLP-1R, to more effectively treat T2D. Improved understanding of T2D aetiology/pathogenesis, coupled with the further elucidation of both GLP-1 activity/targets and GLP-1R mechanisms of activation via different agonists, will likely provide better insight into the therapeutic potential of GLP-1-based therapies to treat T2D.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen Bain
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
13
|
Ahmed F, Al-Habori M, Al-Zabedi E, Saif-Ali R. Impact of triglycerides and waist circumference on insulin resistance and β-cell function in non-diabetic first-degree relatives of type 2 diabetes. BMC Endocr Disord 2021; 21:124. [PMID: 34134670 PMCID: PMC8207623 DOI: 10.1186/s12902-021-00788-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although there is abundant evidence indicating the relative contribution of insulin resistance (HOMA-IR) and β-cell dysfunction (HOMA-β) among first-degree relatives (FDRs) of Type 2 DM patients, few studies reported the association between HOMA-IR and HOMA-β with metabolic syndrome. Our objective was to evaluate the impact of metabolic syndrome factors on HOMA-IR, HOMA-β and glycoproteins in non-diabetic FDRs. METHODS In this study, 103 Yemeni male subjects aged 25-42 years, with BMI < 25 kg/m2 were examined, 39 of whom were normal subjects with no family history of diabetes served as control and 64 subjects were non-diabetic FDRs of Type 2 DM patients. RESULTS Both glycoproteins, glycated haemoglobin (HbA1c) and fructosamine as well as insulin, HOMA-IR and HOMA-β were significantly (p = 4.9 × 10-9; 6.0 × 10-8; 6.6 × 10-12; 1.3 × 10-7; 5.5 × 10-12, respectively) higher in non-diabetic FDRs as compared to control group. Fasting plasma glucose, though within normal range, were significantly (p = 0.026) higher in non-diabetic FDRs. Linear regression analysis showed that both TG and WC are the main metabolic syndrome factors that significantly increased HOMA-IR (B = 0.334, p = 1.97 × 10-6; B = 0.024, p = 1.05 × 10-5), HOMA-β (B = 16.8, p = 6.8 × 10-5; B = 0.95, p = 0.004), insulin (B = 16.5, p = 1.2 × 10-6; B = 1.19, p = 8.3 × 10-6) and HbA1c (B = 0.001, p = 0.034; B = 0.007, p = 0.037). CONCLUSION Triglyceride and WC are the important metabolic syndrome factors associated with insulin resistance, basal β-cell function and insulin levels in non-diabetic FDR men of Type 2 DM patients. Moreover, FDRs showed insulin resistance with compensatory β-cell function (hyperinsulinaemia) suggesting that insulin resistance precede the development of pancreatic β-cell dysfunction in individuals at risk of Type 2 DM.
Collapse
Affiliation(s)
- Fahd Ahmed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana'a, Sana'a, Republic of Yemen
| | - Molham Al-Habori
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana'a, Sana'a, Republic of Yemen.
| | - Ebtesam Al-Zabedi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana'a, Sana'a, Republic of Yemen
| | - Riyadh Saif-Ali
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana'a, Sana'a, Republic of Yemen
| |
Collapse
|
14
|
Dowey R, Iqbal A, Heller SR, Sabroe I, Prince LR. A Bittersweet Response to Infection in Diabetes; Targeting Neutrophils to Modify Inflammation and Improve Host Immunity. Front Immunol 2021; 12:678771. [PMID: 34149714 PMCID: PMC8209466 DOI: 10.3389/fimmu.2021.678771] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.
Collapse
Affiliation(s)
- Rebecca Dowey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ahmed Iqbal
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon R. Heller
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Li G, Tan X, Zhang B, Guan L, Zhang Y, Yin L, Gao M, Zhu S, Xu L. Hengshun Aromatic Vinegar Improves Glycolipid Metabolism in Type 2 Diabetes Mellitus via Regulating PGC-1α/PGC-1β Pathway. Front Pharmacol 2021; 12:641829. [PMID: 33981226 PMCID: PMC8109051 DOI: 10.3389/fphar.2021.641829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Hengshun aromatic vinegar (HSAV), produced by typical solid-state or liquid-state fermentation techniques, is consumed worldwide as a food condiment. HSAV shows multiple bioactivities, but its activity in type 2 diabetes mellitus (T2DM) and possible mechanisms have not been reported. In this study, the effects of HSAV against T2DM were evaluated in insulin-induced HepG2 cells and high-fat diet (HFD) and streptozotocin (STZ) induced T2DM rats. Then, the mechanisms of HSAV against T2DM were explored by Real-time PCR, Western blot, immunofluorescence assays, siRNA transfection and gene overexpression experiments. Results indicated that HSAV significantly improved glucose consumption and reduced triglycerides (TG) contents in metabolic disordered HepG2 cells. Meanwhile, HSAV obviously alleviated general status, liver and kidney functions of T2DM rats, and decreased hyperglycemia and hyperlipidemia, improved insulin resistance, and reduced lipid accumulation in liver. Mechanism studies indicated that HSAV markedly down-regulated the expression of proliferator-activated receptor γ coactivator-1α (PGC-1α), then regulated peroxisome proliferators-activated receptor α (PPAR-α)/protein kinase B (AKT) signal pathway mediated gluconeogenesis and glycogen synthesis. Meanwhile, HSAV significantly up-regulated proliferator-activated receptor γ coactivator-1β (PGC-1β), and subsequently decreased sterol regulatory element binding protein-1c (SREBP-1c) pathway mediated lipogenesis. In conclusion, HSAV showed potent anti-T2DM activity in ameliorating dysfunction of glycolipid metabolism through regulating PGC-1α/PGC-1β pathway, which has a certain application prospect as an effective diet supplement for T2DM therapy in the future.
Collapse
Affiliation(s)
- Guoquan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Xuemei Tan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bao Zhang
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yidan Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shenghu Zhu
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Park JM, Lee HS, Park JY, Jung DH, Lee JW. White Blood Cell Count as a Predictor of Incident Type 2 Diabetes Mellitus Among Non-Obese Adults: A Longitudinal 10-Year Analysis of the Korean Genome and Epidemiology Study. J Inflamm Res 2021; 14:1235-1242. [PMID: 33833545 PMCID: PMC8021258 DOI: 10.2147/jir.s300026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Limited evidence is available on whether the white blood cell (WBC) count is a predictor of type 2 diabetes mellitus (T2DM) in non-obese individuals. This study aimed to determine whether WBC count could be used as an indicator for the prediction of incident T2DM among non-obese individuals using a large, community-based Korean cohort that was observed over 10 years. Patients and methods A total of 4211 non-obese adults without diabetes aged 40-69 years were selected from the Korean Genome and Epidemiology Study. The participants were divided into four groups according to WBC count quartiles. We prospectively assessed the hazard ratios (HRs) with 95% confidence intervals (CIs) for incident T2DM, based on the American Diabetes Association criteria, using multivariate Cox proportional hazards regression models over 10 years after the baseline survey. Results During the follow-up period, 592 (14.1%) participants had newly developed T2DM. The higher quartile of WBC count groups showed significantly higher cumulative T2DM incidence over 10 years after the baseline survey (log-rank test, P < 0.001). Compared with the HRs for individuals in the referent lowest quartile, the HR (95% CI) for incident T2DM in individuals in the highest quartile was 1.55 (1.10-2.18) after adjusting for confounding variables. Conclusion A higher WBC count predicts future incident T2DM among community-dwelling non-obese Korean adults. This study suggests that WBC count could facilitate the prediction of non-obese individuals susceptible to T2DM.
Collapse
Affiliation(s)
- Jae-Min Park
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea.,Department of Medicine, Graduate School of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju-Young Park
- Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, Gyeonggi-do, Republic of Korea
| | - Ji-Won Lee
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Role of Wnt signaling pathways in type 2 diabetes mellitus. Mol Cell Biochem 2021; 476:2219-2232. [PMID: 33566231 DOI: 10.1007/s11010-021-04086-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has become a major global public health issue in the twenty-first century and its incidence has increased each year. Wnt signaling pathways are a set of multi-downstream signaling pathways activated by the binding of Wnt ligands to membrane protein receptors. Wnt signaling pathways regulate protein expression and play important roles in protecting the body's normal physiological metabolism. This review describes Wnt signaling pathways, and then aims to reveal how Wnt signaling pathways participate in the occurrence and development of T2DM. We found that Wnt/c-Jun N-terminal kinase signaling was closely associated with insulin resistance, inflammatory response, and pancreatic β-cell and endothelial dysfunction. β-catenin/transcription factor 7-like 2 (TCF7L2)-mediated and calcineurin/nuclear factor of activated T cells-mediated target genes were involved in insulin synthesis and secretion, insulin degradation, pancreatic β-cell growth and regeneration, and functional application of pancreatic β-cells. In addition, polymorphisms in the TCF7L2 gene could increase risk of T2DM according to previous and the most current results, and the T allele of its variants was a more adverse factor for abnormal pancreatic β-cell function and impaired glucose tolerance in patients with T2DM. These findings indicate a strong correlation between Wnt signaling pathways and T2DM, particularly in terms of pancreatic islet dysfunction and insulin resistance, and new therapeutic targets for T2DM may be identified.
Collapse
|
18
|
Abdul Basit K, Fawwad A, Riaz M, Tahir B, Khalid M, Basit A. NDSP 09: Risk Assessment of Pakistani Individual for Diabetes (RAPID) - Findings from Second National Diabetes Survey of Pakistan (NDSP) 2016-2017. Diabetes Metab Syndr Obes 2021; 14:257-263. [PMID: 33505164 PMCID: PMC7829668 DOI: 10.2147/dmso.s277998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To elucidate the effectiveness of Risk Assessment of Pakistani individuals with diabetes (RAPID) tool in epidemiological and population-based second National Diabetes Survey of Pakistan (NDSP) 2016-2017 for identifying risk of developing type 2 diabetes. METHODOLOGY This observational study was a sub-analysis of the second National Diabetes Survey of Pakistan (NDSP) 2016-2017 conducted from February 2016 to August 2017 in all four provinces of Pakistan. Ethical approval was obtained from National Bioethics Committee Pakistan. RAPID score, a validated and published scoring scale to assess risk of diabetes, originally developed from community-based surveys was used. The risk score is assessed by parameters namely: age, waist circumference, and positive family history of diabetes. Subjects with score greater ≥4 were considered at risk of diabetes. RESULTS A total of 4904 individuals were assessed (2205 males and 2699 females). Mean age of participants was 41.8±14.2 years. Positive family history of diabetes was seen in 1379 (28.1%) people. According to RAPID score 1268 (25.9%) individuals scored ≥4 and were at risk of diabetes. OGTT status of people at risk of diabetes according to RAPID score showed that 18.1% people with diabetes and 29.2% were prediabetic. Whereas, OGTT status of people not at risk of diabetes showed that only 7.6% people with diabetes, 20% were prediabetic. CONCLUSION A simple diabetes risk score can be used for identification of high-risk individuals for diabetes so that timely intervention can be implemented. Community-based awareness programs are needed to educate people regarding healthy lifestyle in order to reduce risk of diabetes.
Collapse
Affiliation(s)
- Khalid Abdul Basit
- Department of Acute Medicine, Whipps Cross University Hospital, Barts Health NHS Trust, London, England
- Department of Population Health, University College London, London, England
| | - Asher Fawwad
- Department of Biochemistry, Baqai Medical University, Karachi, Pakistan
- Department of Research, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan
| | - Musarrat Riaz
- Department of Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan
| | - Bilal Tahir
- Department of Research, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan
| | - Maria Khalid
- Department of Research, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan
| | - Abdul Basit
- Department of Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
19
|
Trischitta V, Prudente S, Doria A. Disentangling the heterogeneity of adulthood-onset non-autoimmune diabetes: a little closer but lot more to do. Curr Opin Pharmacol 2020; 55:157-164. [PMID: 33271410 DOI: 10.1016/j.coph.2020.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Diabetes diagnosed in adults is a highly heterogeneous disorder. It mostly consists of what is referred to as type 2 diabetes but also comprises other entities (i.e. different diseases), including latent autoimmune diabetes, late onset forms of monogenic diabetes and familial diabetes of the adulthood, which has recently been the source of new diabetogenes discovery. Notably, type 2 diabetes is itself heterogeneous as it includes subtypes with onset at the extremes of age and/or weight distributions characterized by different degree of hyperglycemia and cardiovascular risk as compared to common forms of type 2 diabetes occurring in middle-aged, overweight/obese individuals. Understanding whether these are different presentations of one, highly heterogeneous disease or separate nosological entities with different clinical trajectories and requiring different treatments is essential to effectively pursue the path of precision medicine.
Collapse
Affiliation(s)
- Vincenzo Trischitta
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Masilela C, Pearce B, Ongole JJ, Adeniyi OV, Benjeddou M. Factors associated with glycemic control among South African adult residents of Mkhondo municipality living with diabetes mellitus. Medicine (Baltimore) 2020; 99:e23467. [PMID: 33235135 PMCID: PMC7710224 DOI: 10.1097/md.0000000000023467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023] Open
Abstract
This study examines the rate and the influencing factors of glycemic control among adult residents living with DM in Mkhondo Municipality of South Africa.In this cross-sectional study, 157 individuals attending care for DM were recruited. Glycemic control status was categorized as poor if glycated hemoglobin (HbA1c) > 7% and very poor if HbA1c ≥ 9%. Multivariate regression analysis was used to identify the significant determinants of poor and very poor glycemic control.The majority of the study participants were females (84.71%) and above 45 years old (88.55%). The overall prevalence of poor glycemic control was 77.71% (n = 122), while very poor glycemic control occurred in 50.6% (n = 80) of the study cohort. In the multivariate logistic regression model analysis, African traditional [AOR = 0.15; 95% confidence interval (95% CI) 0.04-0.57], fast food consumption (AOR = 5.89; 95% CI 2.09-16.81), elevated total cholesterol (TC) [odds ratio (OR) = 2.33; 95% CI 1.50-5.17], elevated low-density lipoprotein cholesterol (LDL-C) (AOR = 5.28; 95% CI 1.89-14.69), and triglyceride (TG) (AOR = 4.39; 95% CI 1.48-13.00) were the independent and significant determinants of poor glycemic control. Age (AOR = 0.46; 95% CI 0.23-0.92) was the only independent and significant determinant of very poor glycemic control.We found a high rate of poor glycemic control (77.71%) possibly attributed to religious affiliation, fast food consumption, and dyslipidemia. On the contrary, about half of the study sample had very poor glycemic control (HbA1c ≥9%), which was predominant among younger cohort with diabetes mellitus. Interventions aimed at improving glycemic control in this population must also target religious practice, dietary patterns and dyslipidemia as well as tailored-approach for young people.
Collapse
Affiliation(s)
- Charity Masilela
- Department of Biotechnology, University of the Western Cape, Bellville
| | - Brendon Pearce
- Department of Biotechnology, University of the Western Cape, Bellville
| | - Joven Jebio Ongole
- Department of Family Medicine, Center for Teaching and Learning, Piet Retief Hospital, Mkhondo
| | | | - Mongi Benjeddou
- Department of Biotechnology, University of the Western Cape, Bellville
| |
Collapse
|
21
|
Sirdah MM, Reading NS. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clin Genet 2020; 98:525-547. [PMID: 32385895 DOI: 10.1111/cge.13772] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus, also known simply as diabetes, has been described as a chronic and complex endocrine metabolic disorder that is a leading cause of death across the globe. It is considered a key public health problem worldwide and one of four important non-communicable diseases prioritized for intervention through world health campaigns by various international foundations. Among its four categories, Type 2 diabetes (T2D) is the commonest form of diabetes accounting for over 90% of worldwide cases. Unlike monogenic inherited disorders that are passed on in a simple pattern, T2D is a multifactorial disease with a complex etiology, where a mixture of genetic and environmental factors are strong candidates for the development of the clinical condition and pathology. The genetic factors are believed to be key predisposing determinants in individual susceptibility to T2D. Therefore, identifying the predisposing genetic variants could be a crucial step in T2D management as it may ameliorate the clinical condition and preclude complications. Through an understanding the unique genetic and environmental factors that influence the development of this chronic disease individuals can benefit from personalized approaches to treatment. We searched the literature published in three electronic databases: PubMed, Scopus and ISI Web of Science for the current status of T2D and its associated genetic risk variants and discus promising approaches toward a personalized management of this chronic, non-communicable disorder.
Collapse
Affiliation(s)
- Mahmoud M Sirdah
- Division of Hematology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Biology Department, Al Azhar University-Gaza, Gaza, Palestine
| | - N Scott Reading
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
22
|
Yee LD, Mortimer JE, Natarajan R, Dietze EC, Seewaldt VL. Metabolic Health, Insulin, and Breast Cancer: Why Oncologists Should Care About Insulin. Front Endocrinol (Lausanne) 2020; 11:58. [PMID: 32153503 PMCID: PMC7045050 DOI: 10.3389/fendo.2020.00058] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Studies investigating the potential link between adult pre-menopausal obesity [as measured by body mass index (BMI)] and triple-negative breast cancer have been inconsistent. Recent studies show that BMI is not an exact measure of metabolic health; individuals can be obese (BMI > 30 kg/m2) and metabolically healthy or lean (BMI < 25 kg/m2) and metabolically unhealthy. Consequently, there is a need to better understand the molecular signaling pathways that might be activated in individuals that are metabolically unhealthy and how these signaling pathways may drive biologically aggressive breast cancer. One key driver of both type-2 diabetes and cancer is insulin. Insulin is a potent hormone that activates many pathways that drive aggressive breast cancer biology. Here, we review (1) the controversial relationship between obesity and breast cancer, (2) the impact of insulin on organs, subcellular components, and cancer processes, (3) the potential link between insulin-signaling and cancer, and (4) consider time points during breast cancer prevention and treatment where insulin-signaling could be better controlled, with the ultimate goal of improving overall health, optimizing breast cancer prevention, and improving breast cancer survival.
Collapse
|
23
|
Ganmore I, Livny A, Ravona-Springer R, Cooper I, Alkelai A, Shelly S, Tsarfaty G, Heymann A, Schnaider Beeri M, Greenbaum L. TCF7L2 polymorphisms are associated with amygdalar volume in elderly individuals with Type 2 Diabetes. Sci Rep 2019; 9:15818. [PMID: 31676834 PMCID: PMC6825182 DOI: 10.1038/s41598-019-48899-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The association between several Single Nucleotide Polymorphisms (SNPs) within the transcription factor 7-like 2 (TCF7L2) gene and Type 2 Diabetes (T2D) as well as additional T2D-related traits is well established. Since alteration in total and regional brain volumes are consistent findings among T2D individuals, we studied the association of four T2D susceptibility SNPS within TCF7L2 (rs7901695, rs7903146, rs11196205, and rs12255372) with volumes of white matter hyperintensities (WMH), gray matter, and regional volumes of amygdala and hippocampus obtained from structural MRI among 191 T2D elderly Jewish individuals. Under recessive genetic model (controlling for age, sex and intracranial volume), we found that for all four SNPs, carriers of two copies of the T2D risk allele (homozygous genotype) had significantly smaller amygdalar volume: rs7901695- CC genotype vs. CT + TT genotypes, p = 0.002; rs7903146-TT vs. TC + CC, p = 0.003; rs11196205- CC vs. CG + GG, p = 0.0003; and rs12255372- TT vs. TG + GG, p = 0.003. Adjusting also for T2D-related covariates, body mass index (BMI), and ancestry did not change the results substantively (rs7901695, p = 0.003; rs7903146, p = 0.005; rs11196205, p = 0.001; and rs12255372, p = 0.005). Conditional analysis demonstrated that only rs11196205 was independently associated with amygdalar volume at a significant level. Separate analysis of left and right amygdala revealed stronger results for left amygdalar volume. Taken together, we report association of TCF7L2 SNPs with amygdalar volume among T2D elderly Jewish patients. Further studies in other populations are required to support these findings and reach more definitive conclusions.
Collapse
Affiliation(s)
- Ithamar Ganmore
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,Memory clinic, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Memory clinic, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Shahar Shelly
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anthony Heymann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Maccabi Healthcare Services, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lior Greenbaum
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
24
|
New molecular biomarkers in precise diagnosis and therapy of Type 2 diabetes. HEALTH AND TECHNOLOGY 2019. [DOI: 10.1007/s12553-019-00385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Zhou X, Chen C, Yin D, Zhao F, Bao Z, Zhao Y, Wang X, Li W, Wang T, Jin Y, Lv D, Lu Q, Yin X. A Variation in the ABCC8 Gene Is Associated with Type 2 Diabetes Mellitus and Repaglinide Efficacy in Chinese Type 2 Diabetes Mellitus Patients. Intern Med 2019; 58:2341-2347. [PMID: 31118371 PMCID: PMC6746626 DOI: 10.2169/internalmedicine.2133-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective Previous studies have suggested that variations in the ABCC8 gene may be closely associated with T2DM susceptibility and repaglinide response. However, these results have not been entirely consistent, and there are no related studies in a Chinese population, suggesting the need for further exploration. The current study investigated the associations of the ABCC8 rs1801261 polymorphism with type 2 diabetes mellitus (T2DM) susceptibility and repaglinide therapeutic efficacy in Chinese Han T2DM patients. Methods A total of 234 T2DM patients and 105 healthy subjects were genotyped for ABCC8 rs1801261 polymorphism by a polymerase chain reaction-restriction fragment length polymorphism assay. A total of 70 patients with the same genotypes of CYP2C8*3 139Arg and OATP1B1 521TT were randomized to orally take 3 mg repaglinide per day (1 mg each time before meals) for 8 consecutive weeks. The pharmacodynamic parameters of repaglinide and biochemical indicators were then determined before and after repaglinide treatment. Results The frequency of ABCC8 rs1801261 allele was higher in T2DM patients than in the control subjects (22.6% vs.11.0%, p<0.01). After repaglinide treatment, T2DM patients carrying genotype CT showed a significantly attenuated efficacy on FPG (p<0.01) and HbA1c (p<0.01) compared with those with genotype CC. Conclusion These results suggested that the ABCC8 rs1801261 polymorphism might influence T2DM susceptibility and the therapeutic effect of repaglinide in Chinese Han T2DM patients. This study was registered in the Chinese Clinical Trial Register on May 14, 2013 (No. ChiCTR-CCC13003536).
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Chunxia Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Di Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Feng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Zejun Bao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Yun Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Xi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Wei Li
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Yingliang Jin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Dongmei Lv
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| |
Collapse
|
26
|
Systematic analysis of genes and diseases using PheWAS-Associated networks. Comput Biol Med 2019; 109:311-321. [PMID: 31128465 DOI: 10.1016/j.compbiomed.2019.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 02/08/2023]
|
27
|
Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol 2019; 14:50-59. [PMID: 31131037 PMCID: PMC6523054 DOI: 10.15420/ecr.2018.33.1] [Citation(s) in RCA: 810] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a complex metabolic disorder affecting the glucose status of the human body. Chronic hyperglycaemia related to diabetes is associated with end organ failure. The clinical relationship between diabetes and atherosclerotic cardiovascular disease is well established. This makes therapeutic approaches that simultaneously target diabetes and atherosclerotic disease an attractive area for research. The majority of people with diabetes fall into two broad pathogenetic categories, type 1 or type 2 diabetes. The role of obesity, adipose tissue, gut microbiota and pancreatic beta cell function in diabetes are under intensive scrutiny with several clinical trials to have been completed while more are in development. The emerging role of inflammation in both type 1 and type 2 diabetes (T1D and T1D) pathophysiology and associated metabolic disorders, has generated increasing interest in targeting inflammation to improve prevention and control of the disease. After an extensive review of the possible mechanisms that drive the metabolic pattern in T1D and T2D and the inflammatory pathways that are involved, it becomes ever clearer that future research should focus on a model of combined suppression for various inflammatory response pathways.
Collapse
Affiliation(s)
- Sotirios Tsalamandris
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Alexios S Antonopoulos
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Evangelos Oikonomou
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - George-Aggelos Papamikroulis
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Georgia Vogiatzi
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Spyridon Papaioannou
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Spyros Deftereos
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Dimitris Tousoulis
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| |
Collapse
|
28
|
Ahluwalia TS, Kilpeläinen TO, Singh S, Rossing P. Editorial: Novel Biomarkers for Type 2 Diabetes. Front Endocrinol (Lausanne) 2019; 10:649. [PMID: 31611845 PMCID: PMC6776920 DOI: 10.3389/fendo.2019.00649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/06/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Sharma A, Halu A, Decano JL, Padi M, Liu YY, Prasad RB, Fadista J, Santolini M, Menche J, Weiss ST, Vidal M, Silverman EK, Aikawa M, Barabási AL, Groop L, Loscalzo J. Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes. NPJ Syst Biol Appl 2018; 4:25. [PMID: 29977601 PMCID: PMC6028434 DOI: 10.1038/s41540-018-0057-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 04/09/2018] [Accepted: 05/04/2018] [Indexed: 01/14/2023] Open
Abstract
Probing the dynamic control features of biological networks represents a new frontier in capturing the dysregulated pathways in complex diseases. Here, using patient samples obtained from a pancreatic islet transplantation program, we constructed a tissue-specific gene regulatory network and used the control centrality (Cc) concept to identify the high control centrality (HiCc) pathways, which might serve as key pathobiological pathways for Type 2 Diabetes (T2D). We found that HiCc pathway genes were significantly enriched with modest GWAS p-values in the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study. We identified variants regulating gene expression (expression quantitative loci, eQTL) of HiCc pathway genes in islet samples. These eQTL genes showed higher levels of differential expression compared to non-eQTL genes in low, medium, and high glucose concentrations in rat islets. Among genes with highly significant eQTL evidence, NFATC4 belonged to four HiCc pathways. We asked if the expressions of T2D-associated candidate genes from GWAS and literature are regulated by Nfatc4 in rat islets. Extensive in vitro silencing of Nfatc4 in rat islet cells displayed reduced expression of 16, and increased expression of four putative downstream T2D genes. Overall, our approach uncovers the mechanistic connection of NFATC4 with downstream targets including a previously unknown one, TCF7L2, and establishes the HiCc pathways' relationship to T2D.
Collapse
Affiliation(s)
- Amitabh Sharma
- 1Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA.,2Center for Complex Network Research and Department of Physics, Northeastern University, Boston, MA 02115 USA.,3Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215 USA.,4Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215 USA
| | - Arda Halu
- 1Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA.,4Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215 USA
| | - Julius L Decano
- 4Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215 USA
| | - Megha Padi
- 5Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Yang-Yu Liu
- 1Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Rashmi B Prasad
- 6Lund University Diabetes Center, Department of Clinical Sciences, Diabetes & Endocrinology, Skåne University Hospital Malmö, Lund University, Malmö, 20502 Sweden
| | - Joao Fadista
- 6Lund University Diabetes Center, Department of Clinical Sciences, Diabetes & Endocrinology, Skåne University Hospital Malmö, Lund University, Malmö, 20502 Sweden
| | - Marc Santolini
- 1Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA.,2Center for Complex Network Research and Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Jörg Menche
- 2Center for Complex Network Research and Department of Physics, Northeastern University, Boston, MA 02115 USA.,7 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090 Austria
| | - Scott T Weiss
- 1Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Marc Vidal
- 3Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215 USA.,8Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Edwin K Silverman
- 1Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Masanori Aikawa
- 4Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215 USA
| | - Albert-László Barabási
- 1Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA.,2Center for Complex Network Research and Department of Physics, Northeastern University, Boston, MA 02115 USA.,3Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215 USA.,9Center for Network Science, Central European University, Nador u. 9, 1051 Budapest, Hungary
| | - Leif Groop
- 6Lund University Diabetes Center, Department of Clinical Sciences, Diabetes & Endocrinology, Skåne University Hospital Malmö, Lund University, Malmö, 20502 Sweden.,10Department of Clinical Sciences, Islet cell physiology, Skåne University Hospital Malmö, Lund University, Malmö, 20502 Sweden
| | - Joseph Loscalzo
- 11Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
30
|
Entezari MH, Salehi R, Kazemi M, Janghorbani M, Kafeshani M. Comparison of the effect of the Dietary Approaches to Stop Hypertension diet with usual dietary advice on expression of peroxisome proliferators-activated receptor gamma gene in women: A randomized controlled clinical trial. ARYA ATHEROSCLEROSIS 2018; 14:24-31. [PMID: 29942335 PMCID: PMC6011851 DOI: 10.22122/arya.v14i1.1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma (PPAR-γ) which controls body weight, glucose homeostasis, and adipocyte differentiation is a valuable candidate gene for insulin resistance (IR). The present study aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH) diet and usual dietary advice (UDA) on PPAR-γ gene expression in women at risk for cardiovascular disease (CVD). METHODS This randomized controlled trial was performed on 44 women aged 20-50 years at risk for CVD (BMI > 25 kg/m2 and low physical activity). Participants were randomly assigned to the UDA (n = 22) or DASH (n = 22) diets for 12 weeks. The DASH diet was rich in fruits, vegetables, whole grains and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Anthropometric indices and PPAR-γ gene expression were measured and compared between the two groups at the end of the study. RESULTS After the intervention, body mass index (BMI) and waist circumference (WC) significantly decreased in the DASH group (P < 0.050) but the results showed no significant differences between the two groups. At the end of the trial, PPAR-γ gene expression was significantly different between the UDA and the DASH diet groups (P = 0.040) and this difference remained significant after adjustment for BMI, and physical activity (P = 0.030). CONCLUSION The result of the study showed that the DASH diet significantly decreased the expression of PPAR-γ. This finding was unexpected and future studies on the current topic are therefore recommended.
Collapse
Affiliation(s)
- Mohammad Hasan Entezari
- Associate Professor, School of Nutrition and Food Sciences AND Food Security and Nutrition Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasol Salehi
- Associate Professor, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Assistant Professor, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Janghorbani
- Professor, Department of Epidemiology and Biostatistics, School of Public Health , Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Kafeshani
- School of Nutrition and Food Sciences AND Food Security and Nutrition Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Manukumar HM, Shiva Kumar J, Chandrasekhar B, Raghava S, Umesha S. Evidences for diabetes and insulin mimetic activity of medicinal plants: Present status and future prospects. Crit Rev Food Sci Nutr 2018; 57:2712-2729. [PMID: 26857927 DOI: 10.1080/10408398.2016.1143446] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a considerable systemic metabolic disorder to exhibit various metabolic and cardiovascular disorders, mainly hyperglycemia. The global projected estimate of diabetes in 2030 will be about 439 million adults, out of which 300 million expected are of type-2 diabetes mellitus (T2DM). The present knowledge revealed responsible factors, occurrence and mechanism of these factors involved in the DM diseases. Hence, the aim of this review is to address and summarize the causes, plant resources, importance, present status and future programmes for diabetes control. The present review answers the contemporary present questions raised in the scientific field on DM. Two major problems are explained in detail about the autoimmune attack or dysfunction of β-cell and insulin resistance involved for Type 1 and Type 2 DM, respectively. Though there are various approaches to reduce the ill effects of diabetes and its secondary complications, many preferred herbal formulations due to lesser side effects and low cost. For this reason still it is getting increased attention in searching antidiabetic medicinal plants for hot research and to develop targeted medicine. Recurrence of islet autoimmunity lesson from pancreatic islet cell transplantation to cure T1D was outlined. With these highlights, the review summarizes the current knowledge on diabetes occurrence, factors (environmental and genetics), and types (I, II, gestation, and secondary DM), antidiabetic plants, sources for insulin mimetic plant principle compounds and their target mechanism with current and future trusted research areas for controlling of DM.
Collapse
Affiliation(s)
- H M Manukumar
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| | - J Shiva Kumar
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| | - B Chandrasekhar
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| | - Sri Raghava
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| | - S Umesha
- a Department of Studies in Biotechnology , University of Mysore , Manasagangotri, Mysore , Karnataka , India
| |
Collapse
|
32
|
Safar HA, Chehadeh SEH, Abdel-Wareth L, Haq A, Jelinek HF, ElGhazali G, Anouti FA. Vitamin D receptor gene polymorphisms among Emirati patients with type 2 diabetes mellitus. J Steroid Biochem Mol Biol 2018; 175:119-124. [PMID: 28323045 DOI: 10.1016/j.jsbmb.2017.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
At a prevalence rate close to 19.5%, the UAE has one of the highest rates of Type 2 Diabetes Mellitus (T2DM) in the world. Genome wide association studies (GWAS) have led to the identification of several genetic variants that are associated with T2DM. Recently, genes involved in vitamin D metabolism have gained interest because of the association between vitamin D deficiency (VDD) and increased risk for T2DM. Among these, the Vitamin D receptor (VDR) gene is a good candidate for T2DM susceptibility. The aim of this study was to investigate the association between VDR polymorphisms and T2DM among a representative sample of the Emirati population. In this cross sectional study, two hundred and sixty four patients with T2DM and ninety-one healthy controls were enrolled. The study population was genotyped for the three VDR gene mutations, TaqI (rs731236), FokI (rs2228570) and BsmI (rs1544410). VDR alleles and haplotypes were compared between patients and their healthy controls. The mean age of the T2DM cohort was 60±11.59years and 48.21±12.17years for the healthy controls. The G-allele and GG genotype of rs2228570 and T-allele and TT genotype of rs1544410 SNPs were associated with T2DM. In regards to T2DM-related metabolic complications, the AG and GG genotypes of rs731236 were significantly associated with higher total cholesterol (p=0.011) and LDL-cholesterol (p=0.009) levels in the patients with T2DM. In contrast, the CT genotype of rs1544410 was significantly associated with lower BMI (p=0.031) and the TT genotype was associated with lower LDL-cholesterol level (p=0.007). The frequency of AAT and GGC haplotypes was also different between groups (p=0.014; p=0.032, respectively), implying that these haplotypes of the VDR gene are associated with the susceptibility to T2DM in the Emirati population. To conclude, an association between SNPs in the VDR gene (except for rs731236) and T2DM per se was demonstrated. The rs731236 variant was shown to be associated with high cholesterol and LDL-cholesterol levels in T2DM patients, while rs1544410 was associated with lower BMI and lower LDL cholesterol levels. Our results imply that alleles and haploypes of the VDR gene are associated with the susceptibility to T2DM in the Emirati population.
Collapse
Affiliation(s)
- Habiba Al Safar
- Faculty of Biomedical Engineering, Khalifa University of Science, Technology & Research, Abu Dhabi, United Arab Emirates; Khalifa University Center of Biotechnology, Abu Dhabi, United Arab Emirates
| | | | - Laila Abdel-Wareth
- Pathology & Laboratory Medicine Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Afrozul Haq
- VPS Healthcare, Abu Dhabi, United Arab Emirates
| | - Herbert F Jelinek
- Australian School of Advanced Medicine, Macquarie University, Sydney and School of Community Health, Charles Sturt University, Albury, Australia
| | - Gehad ElGhazali
- Pathology and Laboratory Medicine Institute, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Fatme Al Anouti
- Faculty of Biomedical Engineering, Khalifa University of Science, Technology & Research, Abu Dhabi, United Arab Emirates; College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
33
|
Metabolomics applied to diabetes-lessons from human population studies. Int J Biochem Cell Biol 2017; 93:136-147. [PMID: 29074437 DOI: 10.1016/j.biocel.2017.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/30/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
The 'classical' distribution of type 2 diabetes (T2D) across the globe is rapidly changing and it is no longer predominantly a disease of middle-aged/elderly adults of western countries, but it is becoming more common through Asia and the Middle East, as well as increasingly found in younger individuals. This global altered incidence of T2D is most likely associated with the spread of western diets and sedentary lifestyles, although there is still much debate as to whether the increased incidence rates are due to an overconsumption of fats, sugars or more generally high-calorie foods. In this context, understanding the interactions between genes of risk and diet and how they influence the incidence of T2D will help define the causative pathways of the disease. This review focuses on the use of metabolomics in large cohort studies to follow the incidence of type 2 diabetes in different populations. Such approaches have been used to identify new biomarkers of pre-diabetes, such as branch chain amino acids, and associate metabolomic profiles with genes of known risk in T2D from large scale GWAS studies. As the field develops, there are also examples of meta-analysis across metabolomics cohort studies and cross-comparisons with different populations to allow us to understand how genes and diet contribute to disease risk. Such approaches demonstrate that insulin resistance and T2D have far reaching metabolic effects beyond raised blood glucose and how the disease impacts systemic metabolism.
Collapse
|
34
|
Tolbus A, Mortensen MB, Nielsen SF, Kamstrup PR, Bojesen SE, Nordestgaard BG. Kringle IV Type 2, Not Low Lipoprotein(a), as a Cause of Diabetes: A Novel Genetic Approach Using SNPs Associated Selectively with Lipoprotein(a) Concentrations or with Kringle IV Type 2 Repeats. Clin Chem 2017; 63:1866-1876. [PMID: 28971985 DOI: 10.1373/clinchem.2017.277103] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/15/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Low plasma lipoprotein(a) concentrations are associated with type 2 diabetes. Whether this is due to low lipoprotein(a) concentrations per se or to a large number of kringle IV type 2 (KIV-2) repeats remains unclear. We therefore aimed to identify genetic variants associated selectively with lipoprotein(a) concentrations or with the number of KIV-2 repeats, to investigate which of these traits confer risk of diabetes. METHODS We genotyped 8411 individuals from the Copenhagen City Heart Study for 778 single-nucleotide polymorphisms (SNPs) in the proximity of the LPA gene, and examined the association of these SNPs with plasma concentrations of lipoprotein(a) and with KIV-2 number of repeats. SNPs that were selectively associated with lipoprotein(a) concentrations but not with KIV-2 number of repeats, or vice versa, were included in a Mendelian randomization study. RESULTS We identified 3 SNPs (rs12209517, rs12194138, and rs641990) that were associated selectively with lipoprotein(a) concentrations and 3 SNPs (rs1084651, rs9458009, and rs9365166) that were associated selectively with KIV-2 number of repeats. For SNPs selectively associated with lipoprotein(a) concentrations, an allele score of 4-6 vs 0-2 had an odds ratio for type 2 diabetes of 1.03 (95% CI, 0.86-1.23). In contrast, for SNPs selectively associated with KIV-2 number of repeats, an allele score of 4-6 vs 0-2 had an odds ratio for type 2 diabetes of 1.42 (95% CI, 1.17-1.69). CONCLUSIONS Using a novel genetic approach, our results indicate that it is a high number of KIV-2 repeats that are associated causally with increased risk of type 2 diabetes, and not low lipoprotein(a) concentrations per se. This is a reassuring finding for lipoprotein(a)-lowering therapies that do not increase the KIV-2 number of repeats.
Collapse
Affiliation(s)
- Andra Tolbus
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Sune F Nielsen
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Pia R Kamstrup
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Stig E Bojesen
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Frederiksberg, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; .,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Frederiksberg, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Alshaikh MK, Filippidis FT, Al-Omar HA, Rawaf S, Majeed A, Salmasi AM. The ticking time bomb in lifestyle-related diseases among women in the Gulf Cooperation Council countries; review of systematic reviews. BMC Public Health 2017; 17:536. [PMID: 28578688 PMCID: PMC5455090 DOI: 10.1186/s12889-017-4331-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/27/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND This study aims to review all published systematic reviews on the prevalence of modifiable cardiovascular disease risk factors among women from the Gulf Cooperation Council countries (GCC). This is the first review of other systematic reviews that concentrates on lifestyle related diseases among women in GCC countries only. METHOD Literature searches were carried out in three electronic databases for all published systematic reviews on the prevalence of cardiovascular disease risk factors in the GCC countries between January 2000 and February 2016. RESULTS Eleven systematic reviews were identified and selected for our review. Common reported risk factors for cardiovascular disease were obesity, physical inactivity, diabetes, metabolic syndrome and hypertension. In GCC countries, obesity among the female population ranges from 29 to 45.7%, which is one of the highest rates globally, and it is linked with physical inactivity, ranging from 45 to 98.7%. The prevalence of diabetes is listed as one of the top ten factors globally, and was reported with an average of 21%. Hypertension ranged from 20.9 to 53%. CONCLUSIONS The high prevalence of lifestyle-related diseases among women population in GCC is a ticking time bomb and is reaching alarming levels, and require a fundamental social and political changes. These findings highlight the need for comprehensive work among the GCC to strengthen the regulatory framework to decrease and control the prevalence of these factors.
Collapse
Affiliation(s)
- Mashael K Alshaikh
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Charing Cross Campus, St Dunstan's Road, 3rd Floor, Reynolds Building, London, W6 8RP, UK.
- Pharmacy Department, King Saud University, Medical City, Riyadh, Saudi Arabia.
| | - Filippos T Filippidis
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Charing Cross Campus, St Dunstan's Road, 3rd Floor, Reynolds Building, London, W6 8RP, UK
| | - Hussain A Al-Omar
- Pharmacy Department, King Saud University, Medical City, Riyadh, Saudi Arabia
| | - Salman Rawaf
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Charing Cross Campus, St Dunstan's Road, 3rd Floor, Reynolds Building, London, W6 8RP, UK
| | - Azeem Majeed
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Charing Cross Campus, St Dunstan's Road, 3rd Floor, Reynolds Building, London, W6 8RP, UK
| | - Abdul-Majeed Salmasi
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
36
|
García-Chapa EG, Leal-Ugarte E, Peralta-Leal V, Durán-González J, Meza-Espinoza JP. Genetic Epidemiology of Type 2 Diabetes in Mexican Mestizos. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3937893. [PMID: 28607931 PMCID: PMC5451767 DOI: 10.1155/2017/3937893] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
There are currently about 415 million people with diabetes worldwide, a figure likely to increase to 642 million by 2040. In 2015, Mexico was the second Latin American country and sixth in the world in prevalence of this disorder with nearly 11.5 million of patients. Type 2 diabetes (T2D) is the main kind of diabetes and its etiology is complex with environmental and genetic factors involved. Indeed, polymorphisms in several genes have been associated with this disease worldwide. To estimate the genetic epidemiology of T2D in Mexican mestizos a systematic bibliographic search of published articles through PubMed, Scopus, Google Scholar, and Web of Science was conducted. Just case-control studies of candidate genes about T2D in Mexican mestizo inhabitants were included. Nineteen studies that met the inclusion criteria were found. In total, 68 polymorphisms of 41 genes were assessed; 26 of them were associated with T2D risk, which were located in ABCA1, ADRB3, CAPN10, CDC123/CAMK1D, CDKAL1, CDKN2A/2B, CRP, ELMO1, FTO, HHEX, IGF2BP2, IRS1, JAZF1, KCNQ1, LOC387761, LTA, NXPH1, SIRT1, SLC30A8, TCF7L2, and TNF-α genes. Overall, 21 of the 41 analyzed genes were associated with T2D in Mexican mestizos. Such a genetic heterogeneity compares with findings in other ethnic groups.
Collapse
Affiliation(s)
- Eiralí Guadalupe García-Chapa
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Sendero Nacional Km 3, Col. San José, Matamoros, TAMPS, 87349, Mexico
| | - Evelia Leal-Ugarte
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Sendero Nacional Km 3, Col. San José, Matamoros, TAMPS, 87349, Mexico
| | - Valeria Peralta-Leal
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Sendero Nacional Km 3, Col. San José, Matamoros, TAMPS, 87349, Mexico
| | - Jorge Durán-González
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Sendero Nacional Km 3, Col. San José, Matamoros, TAMPS, 87349, Mexico
| | - Juan Pablo Meza-Espinoza
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Sendero Nacional Km 3, Col. San José, Matamoros, TAMPS, 87349, Mexico
| |
Collapse
|
37
|
Zhao Y, Song C, Ma X, Ma X, Wang Q, Ji H, Guo F, Qin G. Synergistic Effect of Family History of Diabetes and Dietary Habits on the Risk of Type 2 Diabetes in Central China. Int J Endocrinol 2017; 2017:9707284. [PMID: 28487736 PMCID: PMC5406746 DOI: 10.1155/2017/9707284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/24/2017] [Accepted: 03/19/2017] [Indexed: 01/06/2023] Open
Abstract
Background. Family history of diabetes (FHD) and lifestyle are associated with type 2 diabetes (T2DM), but little is known about the FHD diet interactions. We aimed to analyze the interactions of FHD and lifestyle factors in Chinese T2DM onset. Methods. This was a cross-sectional survey in central urban China (n = 1234 patients with T2DM and n = 8615 non-T2DM subjects). The biological interactions, defined by Rothman interactions, between FHD and each dietary factor were analyzed by using the synergy index (S) scores. Results. After adjustment for age, gender, BMI, and WHR, a uniparental FHD (OR = 2.84, 95% CI: 2.36-3.42, P < 0.001), a paternal history of FHD (OR = 2.53, 95% CI: 1.91-3.35, P < 0.001), a maternal history of FHD (OR = 3.27, 95% CI: 2.67-4.02, P < 0.001), a biparental history of FHD (OR = 5.26, 95% CI: 2.98-9.31, P < 0.001), and a FHD, irrespective of the parent (OR = 3.59, 95% CI: 3.08-4.17, P < 0.001), were associated with T2DM onset. There were significant interactions between FHD and consuming <15 g/d of potatoes (S = 1.54, 95% CI: 1.12-2.12), <8 g/d of poultry (S = 1.51, 95% CI: 1.04-2.17), <85 g/d of fresh fruits (S = 2.17, 95% CI: 1.63-2.88), and no freshly squeezed juice (S = 2.25, 95% CI: 1.46-3.49). Conclusions. Risk of T2DM was synergistically affected by FHD and dietary habits. Nutrition educational intervention may decrease the prevalence of T2DM in the Chinese with FHD.
Collapse
Affiliation(s)
- Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Chunhua Song
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaokun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Qingzhu Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
- *Guijun Qin:
| |
Collapse
|
38
|
Pradhan P, Upadhyay N, Tiwari A, Singh LP. Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression. ACTA ACUST UNITED AC 2016; 2:192-204. [PMID: 28691104 DOI: 10.15761/nfo.1000145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensification in the frequency of diabetes and the associated vascular complications has been a root cause of blindness and visual impairment worldwide. One such vascular complication which has been the prominent cause of blindness; retinal vasculature, neuronal and glial abnormalities is diabetic retinopathy (DR), a chronic complicated outcome of Type 1 and Type 2 diabetes. It has also become clear that "genetic" variations in population alone can't explain the development and progression of diabetes and its complications including DR. DR experiences engagement of foremost mediators of diabetes such as hyperglycemia, oxidant stress, and inflammatory factors that lead to the dysregulation of "epigenetic" mechanisms involving histone acetylation and histone and DNA methylation, chromatin remodeling and expression of a complex set of stress-regulated and disease-associated genes. In addition, both elevated glucose concentration and insulin resistance leave a robust effect on epigenetic reprogramming of the endothelial cells too, since endothelium associated with the eye aids in maintaining the vascular homeostasis. Furthermore, several studies conducted on the disease suggest that the modifications of the epigenome might be the fundamental mechanism(s) for the proposed metabolic memory' resulting into prolonged gene expression for inflammation and cellular dysfunction even after attaining the glycemic control in diabetics. Henceforth, the present review focuses on the aspects of genetic and epigenetic alterations in genes such as vascular endothelial growth factor and aldose reductase considered being associated with DR. In addition, we discuss briefly the role of the thioredoxin-interacting protein TXNIP, which is strongly induced by high glucose and diabetes, in cellular oxidative stress and mitochondrial dysfunction potentially leading to chromatin remodeling and ocular complications of diabetes. The identification of disease-associated genes and their epigenetic regulations will lead to potential new drugs and gene therapies as well as personalized medicine to prevent or slow down the progression of DR.
Collapse
Affiliation(s)
- Priya Pradhan
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Nisha Upadhyay
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Lalit P Singh
- Departments of Anatomy/Cell Biology and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
39
|
Abstract
Fundamental questions remain unresolved in diabetes: What is the actual mechanism of glucose toxicity? Why is there insulin resistance in type 2 diabetes? Why do diets rich in sugars or saturated fatty acids increase the risk of developing diabetes? Studying the C. elegans homologs of the anti-diabetic adiponectin receptors (AdipoR1 and AdipoR2) has led us to exciting new discoveries and to revisit what may be termed “The Membrane Theory of Diabetes”. We hypothesize that excess saturated fatty acids (obtained through a diet rich in saturated fats or through conversion of sugars into saturated fats via lipogenesis) leads to rigid cellular membranes that in turn impair insulin signalling, glucose uptake and blood circulation, thus creating a vicious cycle that contributes to the development of overt type 2 diabetes. This hypothesis is supported by our own studies in C. elegans and by a wealth of literature concerning membrane composition in diabetics. The purpose of this review is to survey this literature in the light of the new results, and to provide an admittedly membrane-centric view of diabetes.
Collapse
|
40
|
Xue Y, Gao M, Gao Y. Childhood type 2 diabetes: Risks and complications. Exp Ther Med 2016; 12:2367-2370. [PMID: 27703500 PMCID: PMC5038872 DOI: 10.3892/etm.2016.3654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
The universal endocrine pathological state affecting young individuals and adults is type 2 diabetes mellitus, which has seen a significant increase in the last 30 years, particularly in children. Genetic and evnironmental factors are the causative agents for this pathological state in children. This rapid and wide spread of the disease can be controlled by enforcing amendments in environmental factors such as diet, physical activities and obesity. In young infants breastfeeding may be a key modulator of the disease. Associated disorders co-observed in the patients of type 2 diabetes mellitus include renal failure, heart problems and circulatory dysfunctionalities, such as cardiac failure and vision disability. These associated disorders become more pronounced in young patients when they reach puberty. To overcome the lethal outcomes of the disease, early screening of the disease is crucial. The present review focused on the latest updates in the field, as well as plausible risks and complications of this pathological state.
Collapse
Affiliation(s)
- Ying Xue
- Department of Endocrinology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Min Gao
- Department of Endocrinology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Yiqing Gao
- Department of Endocrinology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
41
|
Zia A, Bhatti A, Jalil F, Wang X, John P, Kiani AK, Zafar J, Kamboh MI. Prevalence of type 2 diabetes–associated complications in Pakistan. Int J Diabetes Dev Ctries 2016; 36:179-188. [DOI: 10.1007/s13410-015-0380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
42
|
Saeb ATM, Al-Naqeb D. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach. SCIENTIFICA 2016; 2016:2079704. [PMID: 27313952 PMCID: PMC4904122 DOI: 10.1155/2016/2079704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.
Collapse
Affiliation(s)
- Amr T. M. Saeb
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 18397, Riyadh 11415, Saudi Arabia
| | - Dhekra Al-Naqeb
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 18397, Riyadh 11415, Saudi Arabia
| |
Collapse
|
43
|
Qiu J, Moore JH, Darabos C. Studying the Genetics of Complex Disease With Ancestry-Specific Human Phenotype Networks: The Case of Type 2 Diabetes in East Asian Populations. Genet Epidemiol 2016; 40:293-303. [PMID: 27061195 PMCID: PMC5071667 DOI: 10.1002/gepi.21964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/23/2015] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
Genome‐wide association studies (GWAS) have led to the discovery of over 200 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes mellitus (T2DM). Additionally, East Asians develop T2DM at a higher rate, younger age, and lower body mass index than their European ancestry counterparts. The reason behind this occurrence remains elusive. With comprehensive searches through the National Human Genome Research Institute (NHGRI) GWAS catalog literature, we compiled a database of 2,800 ancestry‐specific SNPs associated with T2DM and 70 other related traits. Manual data extraction was necessary because the GWAS catalog reports statistics such as odds ratio and P‐value, but does not consistently include ancestry information. Currently, many statistics are derived by combining initial and replication samples from study populations of mixed ancestry. Analysis of all‐inclusive data can be misleading, as not all SNPs are transferable across diverse populations. We used ancestry data to construct ancestry‐specific human phenotype networks (HPN) centered on T2DM. Quantitative and visual analysis of network models reveal the genetic disparities between ancestry groups. Of the 27 phenotypes in the East Asian HPN, six phenotypes were unique to the network, revealing the underlying ancestry‐specific nature of some SNPs associated with T2DM. We studied the relationship between T2DM and five phenotypes unique to the East Asian HPN to generate new interaction hypotheses in a clinical context. The genetic differences found in our ancestry‐specific HPNs suggest different pathways are involved in the pathogenesis of T2DM among different populations. Our study underlines the importance of ancestry in the development of T2DM and its implications in pharmocogenetics and personalized medicine.
Collapse
Affiliation(s)
- Jingya Qiu
- Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, United States of America
| | - Jason H Moore
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christian Darabos
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Research Computing, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
44
|
Kasim NB, Huri HZ, Vethakkan SR, Ibrahim L, Abdullah BM. Genetic polymorphisms associated with overweight and obesity in uncontrolled Type 2 diabetes mellitus. Biomark Med 2016; 10:403-15. [DOI: 10.2217/bmm-2015-0037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Generally, obese and overweight individuals display higher free fatty acid levels, which stimulate insulin resistance. The combination of overweight or obesity with insulin resistance can trigger Type 2 diabetes mellitus (T2DM) and are primary contributing factors to the development of uncontrolled T2DM. Genetic polymorphisms also play an important role as they can impact a population's susceptibility to becoming overweight or obese and developing related chronic complications, such as uncontrolled T2DM. This review specifically examines the genetic polymorphisms associated with overweight and obesity in patients with uncontrolled T2DM. Particularly, gene polymorphisms in ADIPOQ (rs1501299 and rs17300539), LepR (rs1137101 and rs1045895), IRS2 (rs1805092), GRB14 (rs10195252 and rs3923113) and PPARG (rs1801282) have been associated with overweight and obesity in uncontrolled T2DM.
Collapse
Affiliation(s)
- Nor Bahirah Kasim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hasniza Zaman Huri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Clinical Investigation Centre, Faculty of Medicine, 13th Floor Main Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia
| | | | - Luqman Ibrahim
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bashar Mudhaffar Abdullah
- Clinical Investigation Centre, Faculty of Medicine, 13th Floor Main Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Kafeshani M, Janghorbani M, Salehi R, Kazemi M, Entezari MH. Dietary approaches to stop hypertension influence on insulin receptor substrate-1gene expression: A randomized controlled clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 20:832-7. [PMID: 26759568 PMCID: PMC4696366 DOI: 10.4103/1735-1995.170596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background: Insulin receptor substrate (IRS) Type 1 is a main substrate for the insulin receptor, controls insulin signaling in skeletal muscle, adipose tissue, and the vascular, so it is an important candidate gene for insulin resistance (IR). We aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH) and Usual Dietary Advices (UDA) on IRS1 gene expression in women at risk for cardiovascular disease. Materials and Methods: A randomized controlled clinical trial was performed in 44 women at risk for cardiovascular disease. Participants were randomly assigned to a UDA diet or the DASH diet. The DASH diet was rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Gene expression was assessed by the real-time polymerase chain reaction at the first of study and after 12 weeks. Independent sample t-test and paired-samples t-test were used to compare means of all variables within and between two groups respectively. Results: IRS1 gene expression was increased in DASH group compared with UDA diet (P = 0.00). Weight and waist circumference decreased in DASH group significantly compared to the UDA group (P < 0.05) but the results between the two groups showed no significant difference. Conclusion: DASH diet increased IRS1 gene expression and probably has beneficial effects on IR risks.
Collapse
Affiliation(s)
- Marzieh Kafeshani
- Department of Clinical Nutrition/Community Nutrition/Food Science & Technology, Food Security Research Center, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Janghorbani
- Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasol Salehi
- Department of Genetics, and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics, and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hasan Entezari
- Department of Clinical Nutrition/Community Nutrition/Food Science & Technology, Food Security Research Center, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
46
|
Lv Z, Li Y, Wu Y, Qu Y. Association of ICAM-1 and HMGA1 Gene Variants with Retinopathy in Type 2 Diabetes Mellitus Among Chinese Individuals. Curr Eye Res 2015; 41:1118-1122. [PMID: 26717491 DOI: 10.3109/02713683.2015.1094093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the association of intercellular cell-adhesion molecule 1 (ICAM-1) and high-mobility group A1 (HMGA1) gene variants with diabetic retinopathy (DR) in a Chinese type 2 diabetes mellitus (T2DM) cohort. METHODS A total of 792 patients with T2DM were enrolled and categorized into two groups: (1) the DR group consisted of 448 patients, which was further subclassified into the proliferative DR (PDR) group with 220 patients and the nonproliferative DR (NPDR) group with 228 patients; (2) the diabetes without retinopathy (DNR) group comprised 344 patients who had no signs of DR. The single-nucleotide polymorphism (SNP) rs5498 in ICAM-1 gene and IVS5-13insC variant in HMGA1 gene were genotyped. RESULTS No evident association was found in the allele frequencies between SNP rs5498 in ICAM-1 gene and DR patients; the combined p values for the additive, dominant, and recessive models in genotype were greater than 0.05. No significant association was identified between the IVS5-13insC variant in HMGA1 gene and DR individuals. CONCLUSIONS Our results revealed that SNP rs5498 in ICAM-1 gene and IVS5-13insC variant in HMGA1 gene were not associated with the susceptibility of DR in the Chinese T2DM cohort.
Collapse
Affiliation(s)
- Zhiping Lv
- a Department of Ophthalmology , Qilu Hospital of Shandong University , Jinan , China
| | - Ying Li
- a Department of Ophthalmology , Qilu Hospital of Shandong University , Jinan , China
| | - Yongzhong Wu
- b State Key Lab of Crystal Materials, Shandong University , Jinan , China
| | - Yi Qu
- a Department of Ophthalmology , Qilu Hospital of Shandong University , Jinan , China
| |
Collapse
|
47
|
Ahmad MS, Ashrafian H, Alsaleh M, Holmes E. Role of metabolic phenotyping in understanding obesity and related conditions in Gulf Co-operation Council countries. Clin Obes 2015; 5:302-11. [PMID: 26567983 DOI: 10.1111/cob.12121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/21/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023]
Abstract
Obesity is a major health concern in the Middle East and the incidence is rising in all sections of the population. Efforts to control obesity through diet and lifestyle interventions, and by surgical means, have had limited effect, and the gene-environment interactions underpinning the development of obesity and related pathologies such as metabolic syndrome, cardiovascular disease and certain cancers are poorly defined. Lifestyle, genetics, inflammation and the interaction between the intestinal bacteria and host metabolism have all been implicated in creating an obesogenic environment. We summarize the role of metabolic and microbial phenotyping in understanding the aetiopathogenesis of obesity and in characterizing the metabolic responses to surgical and non-surgical interventions, and explore the potential for clinical translation of this approach.
Collapse
Affiliation(s)
- M S Ahmad
- Drug Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H Ashrafian
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - M Alsaleh
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - E Holmes
- Drug Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
48
|
Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J 2015; 92:63-9. [DOI: 10.1136/postgradmedj-2015-133281] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022]
|
49
|
Allahdini M, Kamalidehghan B, Akbari L, Azadfar P, Rahmani A, Ahmadipour F, Meng GY, Masserrat A, Houshmand M. Prevalence of the rs7903146C>T polymorphism in TCF7L2 gene for prediction of type 2 diabetes risk among Iranians of different ethnicities. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5835-41. [PMID: 26604685 PMCID: PMC4629960 DOI: 10.2147/dddt.s82485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Pharmacogenetics is the study of genetic polymorphisms affecting responses to drug therapy. The common rs7903146 (C>T) polymorphism of the TCF7L2 gene has recently been associated with type 2 diabetes (T2D). In this study, prevalence of the rs7903146 (C>T) polymorphism in the TCF7L2 gene for prediction of T2D risk was examined in an Iranian population of different ethnicities. Methods The prevalence of rs7903146 (C>T) and the predicted phenotypes, including extensive metabolizers, intermediate metabolizers, and poor metabolizers were investigated in blood samples of 300 unrelated healthy individuals in an Iranian population, including Fars, Turk, Lure, and Kurd, using polymerase chain reaction restriction fragment length polymorphism and direct genomic DNA sequencing. Results The homozygous wild-type (C/C), heterozygous (C/T), and homozygous (T/T) allelic frequencies of rs7903146 (C>T) in the TCF7L2 gene were 29% (extensive metabolizers), 66.34% (intermediate metabolizers), and 4.66% (poor metabolizers), respectively. The C/C, C/T, and T/T genotypic frequencies of the rs7903146 (C>T) allele were significantly different (P<0.01) among Iranians of different ethnicities. The frequency of the homozygous T/T variant of the rs7903146 (C>T) allele was significantly low in the Lure (P<0.01) and high in the Fars (P<0.001) ethnicities. Additionally, the frequency of the T/T variant of the rs7903146 (C>T) allele in the South of Iran was the highest (P<0.04), while the East of Iran had the lowest frequency (P<0.01). Conclusion The prediction of rs7903146 (C>T) is required in drug research and routine treatment, where the information would be helpful for clinicians to optimize therapy and adverse drug reactions and predict drug response in individuals at risk of T2D.
Collapse
Affiliation(s)
- Mojgan Allahdini
- Department of Molecular Biology, Ahar Branch Islamic Azad University, Ahar, Iran
| | - Behnam Kamalidehghan
- Pharmacy Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Leila Akbari
- Department of Biology, Sciences and Research Branch, Azad University, Tehran, Iran
| | - Parisa Azadfar
- Department of Biology, Sciences and Research Branch, Azad University, Tehran, Iran
| | - Ali Rahmani
- Department of Molecular Biology, Ahar Branch Islamic Azad University, Ahar, Iran
| | - Fatemeh Ahmadipour
- Pharmacy Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Goh Yong Meng
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
50
|
Sala D, Zorzano A. Differential control of muscle mass in type 1 and type 2 diabetes mellitus. Cell Mol Life Sci 2015; 72:3803-17. [PMID: 26091746 PMCID: PMC11113699 DOI: 10.1007/s00018-015-1954-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus--whether driven by insulin deficiency or insulin resistance--causes major alterations in muscle metabolism. These alterations have an impact on nutrient handling, including the metabolism of glucose, lipids, and amino acids, and also on muscle mass and strength. However, the ways in which the distinct forms of diabetes affect muscle mass differ greatly. The most common forms of diabetes mellitus are type 1 and type 2. Thus, whereas type 1 diabetic subjects without insulin treatment display a dramatic loss of muscle, most type 2 diabetic subjects show no changes or even an increase in muscle mass. However, the most commonly used rodent models of type 2 diabetes are characterized by muscle atrophy and do not mimic the features of the disease in humans in terms of muscle mass. In this review, we analyze the processes that are differentially regulated under these forms of diabetes and propose regulatory mechanisms to explain them.
Collapse
Affiliation(s)
- David Sala
- Development, Aging and Regeneration Program (DARe), Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, 08028, Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|