1
|
Vandenhoeck J, Neefs I, Vanpoucke T, Ibrahim J, Suls A, Peeters D, Schepers A, Hoischen A, Fransen E, Peeters M, Van Camp G, Op de Beeck K. IMPRESS: Improved methylation profiling using restriction enzymes and smMIP sequencing, combined with a new biomarker panel, creating a multi-cancer detection assay. Br J Cancer 2024; 131:1224-1236. [PMID: 39181941 PMCID: PMC11442765 DOI: 10.1038/s41416-024-02809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Despite the worldwide progress in cancer diagnostics, more sensitive diagnostic biomarkers are needed. The methylome has been extensively investigated in the last decades, but a low-cost, bisulfite-free detection method for multiplex analysis is still lacking. METHODS We developed a methylation detection technique called IMPRESS, which combines methylation-sensitive restriction enzymes and single-molecule Molecular Inversion Probes. We used this technique for the development of a multi-cancer detection assay for eight of the most lethal cancer types worldwide. We selected 1791 CpG sites that can distinguish tumor from normal tissue based on DNA methylation. These sites were analysed with IMPRESS in 35 blood, 111 tumor and 114 normal samples. Finally, a classifier model was built. RESULTS We present the successful development of IMPRESS and validated it with ddPCR. The final classifier model discriminating tumor from normal samples was built with 358 CpG target sites and reached a sensitivity of 0.95 and a specificity of 0.91. Moreover, we provide data that highlight IMPRESS's potential for liquid biopsies. CONCLUSIONS We successfully created an innovative DNA methylation detection technique. By combining this method with a new multi-cancer biomarker panel, we developed a sensitive and specific multi-cancer assay, with potential use in liquid biopsies.
Collapse
Affiliation(s)
- Janah Vandenhoeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Isabelle Neefs
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Thomas Vanpoucke
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Joe Ibrahim
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Arvid Suls
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Dieter Peeters
- Department of Pathology, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Anne Schepers
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Alexander Hoischen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Marc Peeters
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium.
| |
Collapse
|
2
|
Wu D, Kanaan SB, Penewit K, Waalkes A, Urselli F, Nelson JL, Radich J, Salipante SJ. Ultrasensitive Quantitation of Genomic Chimerism by Single-Molecule Molecular Inversion Probe Capture and High-Throughput Sequencing of Copy Number Deletion Polymorphisms. J Mol Diagn 2022; 24:167-176. [PMID: 34775030 PMCID: PMC8819186 DOI: 10.1016/j.jmoldx.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
Genomic chimerism represents co-existing cells with different genotypes and has diagnostic significance in transplant engraftment monitoring, residual cancer detection, and other contexts. We previously described an approach to chimerism detection by interrogating variably present or absent genomic loci using single-molecule molecular inversion probes (smMIPs) and next-generation sequencing, which provided ultrasensitive limits of detection (<1 in 10,000 cells) but was not reliably quantitative. Herein, smMIP testing was modified to accurately quantitate chimeric cells by incorporating copy number neutral control loci for data normalization and computationally modeling cell mixtures from individual-specific genotypes. Data demonstrate precision and accuracy over three orders of magnitude (0.01% to 50% chimerism). Seventy hematopoietic stem cell transplant specimens from single (n = 42) or double (n = 28) donors were evaluated, benchmarking smMIP against conventional variable number tandem repeat (VNTR) analysis and an unrelated, ultrasensitive polymorphism-specific quantitative PCR (PS-qPCR) assay. Quantitative concordance of all three assays was high (P < 0.0005, Pearson correlation coefficient), although smMIP correlated better with VNTR testing than PS-qPCR. smMIP and PS-qPCR collectively identified low-level chimerism in all specimens testing negative by VNTR (n = 41 and n = 45 of 48 specimens, respectively). This work demonstrates the feasibility of smMIP-based chimerism testing for quantitative and ultrasensitive measurement of genomic chimerism at practical levels approaching one in one million cells, and cross-validates the approach.
Collapse
Affiliation(s)
- David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington,Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Sami B. Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Chimerocyte, Inc., Seattle, Washington
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Francesca Urselli
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - J. Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Chimerocyte, Inc., Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington
| | - Jerald Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington,Brotman Baty Institute for Precision Medicine, Seattle, Washington,Address correspondence to Stephen J. Salipante, M.D., Ph.D., University of Washington, Box 357110, 1959 NE Pacific St., Seattle, WA 98195.
| |
Collapse
|
3
|
Liu X, Shao C, Fu J. Promising Biomarkers of Radiation-Induced Lung Injury: A Review. Biomedicines 2021; 9:1181. [PMID: 34572367 PMCID: PMC8470495 DOI: 10.3390/biomedicines9091181] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury (RILI) is one of the main dose-limiting side effects in patients with thoracic cancer during radiotherapy. No reliable predictors or accurate risk models are currently available in clinical practice. Severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) will reduce the quality of life, even when the anti-tumor treatment is effective for patients. Thus, precise prediction and early diagnosis of lung toxicity are critical to overcome this longstanding problem. This review summarizes the primary mechanisms and preclinical animal models of RILI reported in recent decades, and analyzes the most promising biomarkers for the early detection of lung complications. In general, ideal integrated models considering individual genetic susceptibility, clinical background parameters, and biological variations are encouraged to be built up, and more prospective investigations are still required to disclose the molecular mechanisms of RILI as well as to discover valuable intervention strategies.
Collapse
Affiliation(s)
- Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
4
|
Rosenbaum JN, Berry AB, Church AJ, Crooks K, Gagan JR, López-Terrada D, Pfeifer JD, Rennert H, Schrijver I, Snow AN, Wu D, Ewalt MD. A Curriculum for Genomic Education of Molecular Genetic Pathology Fellows: A Report of the Association for Molecular Pathology Training and Education Committee. J Mol Diagn 2021; 23:1218-1240. [PMID: 34245921 DOI: 10.1016/j.jmoldx.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular genetic pathology (MGP) is a subspecialty of pathology and medical genetics and genomics. Genomic testing, which we define as that which generates large data sets and interrogates large segments of the genome in a single assay, is increasingly recognized as essential for optimal patient care through precision medicine. The most common genomic testing technologies in clinical laboratories are next-generation sequencing and microarray. It is essential to train in these methods and to consider the data generated in the context of the diagnosis, medical history, and other clinical findings of individual patients. Accordingly, updating the MGP fellowship curriculum to include genomics is timely, important, and challenging. At the completion of training, an MGP fellow should be capable of independently interpreting and signing out results of a wide range of genomic assays and, given the appropriate context and institutional support, of developing and validating new assays in compliance with applicable regulations. The Genomics Task Force of the MGP Program Directors, a working group of the Association for Molecular Pathology Training and Education Committee, has developed a genomics curriculum framework and recommendations specific to the MGP fellowship. These recommendations are presented for consideration and implementation by MGP fellowship programs with the understanding that MGP programs exist in a diversity of clinical practice environments with a spectrum of available resources.
Collapse
Affiliation(s)
- Jason N Rosenbaum
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anna B Berry
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Swedish Cancer Institute and Institute of Systems Biology, Seattle, Washington
| | - Alanna J Church
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Kristy Crooks
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeffrey R Gagan
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dolores López-Terrada
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - John D Pfeifer
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Hanna Rennert
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Iris Schrijver
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Anthony N Snow
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - David Wu
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Mark D Ewalt
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|