1
|
Fernández Comaduran M, Minotti S, Jacob-Tomas S, Rizwan J, Larochelle N, Robitaille R, Sephton CF, Vera M, Nalbantoglu JN, Durham HD. Impact of histone deacetylase inhibition and arimoclomol on heat shock protein expression and disease biomarkers in primary culture models of familial ALS. Cell Stress Chaperones 2024; 29:359-380. [PMID: 38570009 PMCID: PMC11015512 DOI: 10.1016/j.cstres.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Protein misfolding and mislocalization are common themes in neurodegenerative disorders, including motor neuron disease, and amyotrophic lateral sclerosis (ALS). Maintaining proteostasis is a crosscutting therapeutic target, including the upregulation of heat shock proteins (HSP) to increase chaperoning capacity. Motor neurons have a high threshold for upregulating stress-inducible HSPA1A, but constitutively express high levels of HSPA8. This study compared the expression of these HSPs in cultured motor neurons expressing three variants linked to familial ALS: TAR DNA binding protein 43 kDa (TDP-43)G348C, fused in sarcoma (FUS)R521G, or superoxide dismutase I (SOD1)G93A. All variants were poor inducers of Hspa1a, and reduced levels of Hspa8 mRNA and protein, indicating multiple compromises in chaperoning capacity. To promote HSP expression, cultures were treated with the putative HSP coinducer, arimoclomol, and class I histone deacetylase inhibitors, to promote active chromatin for transcription, and with the combination. Treatments had variable, often different effects on the expression of Hspa1a and Hspa8, depending on the ALS variant expressed, mRNA distribution (somata and dendrites), and biomarker of toxicity measured (histone acetylation, maintaining nuclear TDP-43 and the neuronal Brm/Brg-associated factor chromatin remodeling complex component Brg1, mitochondrial transport, FUS aggregation). Overall, histone deacetylase inhibition alone was effective on more measures than arimoclomol. As in the FUS model, arimoclomol failed to induce HSPA1A or preserve Hspa8 mRNA in the TDP-43 model, despite preserving nuclear TDP-43 and Brg1, indicating neuroprotective properties other than HSP induction. The data speak to the complexity of drug mechanisms against multiple biomarkers of ALS pathogenesis, as well as to the importance of HSPA8 for neuronal proteostasis in both somata and dendrites.
Collapse
Affiliation(s)
- Mario Fernández Comaduran
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sandra Minotti
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nancy Larochelle
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Richard Robitaille
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montreal, Quebec, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Josephine N Nalbantoglu
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Heather D Durham
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Strayer AL, Dennys-Rivers CN, Ricart KC, Bae N, Beckman JS, Franco MC, Estevez AG. Ligand-independent activation of the P2X7 receptor by Hsp90 inhibition stimulates motor neuron apoptosis. Exp Biol Med (Maywood) 2019; 244:901-914. [PMID: 31142143 PMCID: PMC6690143 DOI: 10.1177/1535370219853798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/08/2019] [Indexed: 01/15/2023] Open
Abstract
Activation of the extracellular ATP ionotropic receptor P2X7 stimulates motor neuron apoptosis, whereas its inhibition in cell and animal models of amyotrophic lateral sclerosis can be protective. These observations suggest that P2X7 receptor activation is relevant to motor neuron disease and that it could be targeted for therapeutic development. Heat shock protein 90 (Hsp90) is an integral regulatory component of the P2X7 receptor complex, antagonizing ligand-induced receptor activation. Here, we show that the repressive activity of Hsp90 on P2X7 receptor activation in primary motor neurons is highly sensitive to inhibition. Primary motor neurons in culture are 100-fold more sensitive to Hsp90 inhibition by geldanamycin than other neuronal populations. Pharmacological inhibition and down-regulation of the P2X7 receptor prevented motor neuron apoptosis triggered by Hsp90 inhibition, which occurred in the absence of extracellular ATP. These observations suggest that inhibition of a seemingly motor neuron specific pool of Hsp90 leads to ligand independent activation of P2X7 receptor and motor neuron death. Downstream of Hsp90 inhibition, P2X7 receptor activated the phosphatase and tensin homolog (TPEN), which in turn suppressed the pro-survival phosphatidyl inositol 3 kinase (PI3K)/Akt pathway, leading to Fas-dependent motor neuron apoptosis. Conditions altering the interaction between P2X7 receptor and Hsp90, such as recruitment of Hsp90 to other subcellular compartments under stress conditions, or nitration following oxidative stress can induce motor neuron death. These findings may have broad implications in neurodegenerative disorders, including amyotrophic lateral sclerosis, in which activation of P2X7 receptor may be involved in both autonomous and non-autonomous motor neurons death.
Collapse
Affiliation(s)
- Amy L Strayer
- Department of Neuroscience Weill Cornell Medical College, New
York, NY10021, USA
| | - Cassandra N Dennys-Rivers
- Burnett School of Biomedical Sciences, College of Medicine,
University of Central Florida, Orlando, FL 32826, USA
| | - Karina C Ricart
- Department of Pathology, University of Alabama at Birmingham,
Birmingham, AL 35294, USA
| | - Narae Bae
- Department of Pharmacology, Weill Cornell Medical College, New
York, NY10021, USA
| | - Joseph S Beckman
- Department of Biochemistry and Biophysics, College of Science,
Oregon State University, Corvallis, OR 97331, USA
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science,
Oregon State University, Corvallis, OR 97331, USA
| | - Alvaro G Estevez
- Department of Biochemistry and Biophysics, College of Science,
Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Yeh SJ, Yeh CC, Lan CY, Chen BS. Investigating Common Pathogenic Mechanisms between Homo sapiens and Different Strains of Candida albicans for Drug Design: Systems Biology Approach via Two-Sided NGS Data Identification. Toxins (Basel) 2019; 11:toxins11020119. [PMID: 30769958 PMCID: PMC6409619 DOI: 10.3390/toxins11020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Candida albicans (C. albicans) is the most prevalent fungal species. Although it is a healthy microbiota, genetic and epigenetic alterations in host and pathogen, and microenvironment changes would lead to thrush, vaginal yeast infection, and even hematogenously disseminated infection. Despite the fact that cytotoxicity is well-characterized, few studies discuss the genome-wide genetic and epigenetic molecular mechanisms between host and C. albicans. The aim of this study is to identify drug targets and design a multiple-molecule drug to prevent the infection from C. albicans. To investigate the common and specific pathogenic mechanisms in human oral epithelial OKF6/TERT-2 cells during the C. albicans infection in different strains, systems modeling and big databases mining were used to construct candidate host–pathogen genetic and epigenetic interspecies network (GEIN). System identification and system order detection are applied on two-sided next generation sequencing (NGS) data to build real host–pathogen cross-talk GEINs. Core host–pathogen cross-talk networks (HPCNs) are extracted by principal network projection (PNP) method. By comparing with core HPCNs in different strains of C. albicans, common pathogenic mechanisms were investigated and several drug targets were suggested as follows: orf19.5034 (YBP1) with the ability of anti-ROS; orf19.939 (NAM7), orf19.2087 (SAS2), orf19.1093 (FLO8) and orf19.1854 (HHF22) with high correlation to the hyphae growth and pathogen protein interaction; orf19.5585 (SAP5), orf19.5542 (SAP6) and orf19.4519 (SUV3) with the cause of biofilm formation. Eventually, five corresponding compounds—Tunicamycin, Terbinafine, Cerulenin, Tetracycline and Tetrandrine—with three known drugs could be considered as a potential multiple-molecule drug for therapeutic treatment of C. albicans.
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chun-Chieh Yeh
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Electrical Engineering, Yuan Ze University, Chungli 32003, Taiwan.
| |
Collapse
|
4
|
Small molecule inhibitor screening identifified HSP90 inhibitor 17-AAG as potential therapeutic agent for gallbladder cancer. Oncotarget 2018; 8:26169-26184. [PMID: 28412732 PMCID: PMC5432248 DOI: 10.18632/oncotarget.15410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Gallbladder cancer (GBC) is a lethal cancer with poor prognosis associated with high invasiveness and poor response to chemotherapy and radiotherapy. New therapeutic approaches are urgently needed in order to improve survival and response rates of GBC patients. We screened 130 small molecule inhibitors on a panel of seven GBC cell lines and identified the HSP90 inhibitor 17-AAG as one of the most potent inhibitory drugs across the different lines. We tested the antitumor efficacy of 17-AAG and geldanamycin (GA) in vitro and in a subcutaneous preclinical tumor model NOD-SCID mice. We also evaluated the expression of HSP90 by immunohistochemistry in human GBC tumors.In vitro assays showed that 17-AAG and GA significantly reduced the expression of HSP90 target proteins, including EGFR, AKT, phospho-AKT, Cyclin B1, phospho-ERK and Cyclin D1. These molecular changes were consistent with reduced cell viability and cell migration and promotion of G2/M cell cycle arrest and apoptosis observed in our in vitro studies.In vivo, 17-AAG showed efficacy in reducing subcutaneous tumors size, exhibiting a 69.6% reduction in tumor size in the treatment group compared to control mice (p < 0.05).The HSP90 immunohistochemical staining was seen in 182/209 cases of GBC (87%) and it was strongly expressed in 70 cases (33%), moderately in 58 cases (28%), and weakly in 54 cases (26%).Our pre-clinical observations strongly suggest that the inhibition of HSP90 function by HSP90 inhibitors is a promising therapeutic strategy for gallbladder cancer that may benefit from new HSP90 inhibitors currently in development.
Collapse
|
5
|
Huang C, Hu W, Wang J, Tong L, Lu X, Wu F, Ling Y, Jiang B, Zhang W, Chen Z, Xiong Q, Qin Y, Yang R. Methylene blue increases the amount of HSF1 through promotion of PKA-mediated increase in HSF1-p300 interaction. Int J Biochem Cell Biol 2017; 84:75-88. [DOI: 10.1016/j.biocel.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
|
6
|
Zhang H, Yang J, Wu S, Gong W, Chen C, Perrett S. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response. J Biol Chem 2016; 291:6967-81. [PMID: 26823468 PMCID: PMC4807281 DOI: 10.1074/jbc.m115.673608] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/27/2022] Open
Abstract
DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria.
Collapse
Affiliation(s)
- Hong Zhang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Jie Yang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, University of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China, and
| | - Si Wu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Weibin Gong
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chang Chen
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China,
| |
Collapse
|
7
|
Shah SP, Lonial S, Boise LH. When Cancer Fights Back: Multiple Myeloma, Proteasome Inhibition, and the Heat-Shock Response. Mol Cancer Res 2015; 13:1163-73. [PMID: 26013169 DOI: 10.1158/1541-7786.mcr-15-0135] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023]
Abstract
Multiple myeloma is a plasma cell malignancy with an estimated 26,850 new cases and 11,240 deaths in 2015 in the United States. Two main classes of agents are the mainstays of therapy-proteasome inhibitors (PI) and immunomodulatory drugs (IMiD). Other new targets are emerging rapidly, including monoclonal antibodies and histone deacetylase (HDAC) inhibitors. These therapeutic options have greatly improved overall survival, but currently only 15% to 20% of patients experience long-term progression-free survival or are cured. Therefore, improvement in treatment options is needed. One potential means of improving clinical options is to target resistance mechanisms for current agents. For example, eliminating the cytoprotective heat-shock response that protects myeloma cells from proteasome inhibition may enhance PI-based therapies. The transcription factor heat-shock factor 1 (HSF1) is the master regulator of the heat-shock response. HSF1 is vital in the proteotoxic stress response, and its activation is controlled by posttranslational modifications (PTM). This review details the mechanisms of HSF1 regulation and discusses leveraging that regulation to enhance PI activity.
Collapse
Affiliation(s)
- Shardule P Shah
- Department of Hematology and Medical Oncology, Winship, Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, Georgia
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship, Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, Georgia
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship, Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, Georgia. Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
8
|
The Role of α-Synuclein and LRRK2 in Tau Phosphorylation. PARKINSONS DISEASE 2015; 2015:734746. [PMID: 25977830 PMCID: PMC4419261 DOI: 10.1155/2015/734746] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 01/08/2023]
Abstract
There is now a considerable body of experimental evidence that Parkinson's disease arises through physiological interaction of causative molecules, leading to tau pathology. In this review, we discuss the physiological role of α-synuclein and LRRK2 in the abnormal phosphorylation of tau. In addition, as recent reports have indicated that heat shock proteins- (HSPs-) inducing drugs can help to ameliorate neurodegenerative diseases associated with tau pathology, we also discuss therapeutic strategies for PD focusing on inhibition of α-synuclein- and LRRK2-associated tau phosphorylation by HSPs.
Collapse
|
9
|
Many roads lead to Rome? Multiple modes of Cu,Zn superoxide dismutase destabilization, misfolding and aggregation in amyotrophic lateral sclerosis. Essays Biochem 2014; 56:149-65. [DOI: 10.1042/bse0560149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative syndrome characterized by progressive paralysis and motor neuron death. Although the pathological mechanisms that cause ALS remain unclear, accumulating evidence supports that ALS is a protein misfolding disorder. Mutations in Cu,Zn-SOD1 (copper/zinc superoxide dismutase 1) are a common cause of familial ALS. They have complex effects on different forms of SOD1, but generally destabilize the protein and enhance various modes of misfolding and aggregation. In addition, there is some evidence that destabilized covalently modified wild-type SOD1 may be involved in disease. Among the multitude of misfolded/aggregated species observed for SOD1, multiple species may impair various cellular components at different disease stages. Newly developed antibodies that recognize different structural features of SOD1 represent a powerful tool for further unravelling the roles of different SOD1 structures in disease. Evidence for similar cellular targets of misfolded/aggregated proteins, loss of cellular proteostasis and cell–cell transmission of aggregates point to common pathological mechanisms between ALS and other misfolding diseases, such as Alzheimer's, Parkinson's and prion diseases, as well as serpinopathies. The recent progress in understanding the molecular basis for these devastating diseases provides numerous avenues for developing urgently needed therapeutics.
Collapse
|
10
|
Zinkie S, Gentil BJ, Minotti S, Durham HD. Expression of the protein chaperone, clusterin, in spinal cord cells constitutively and following cellular stress, and upregulation by treatment with Hsp90 inhibitor. Cell Stress Chaperones 2013; 18:745-58. [PMID: 23595219 PMCID: PMC3789872 DOI: 10.1007/s12192-013-0427-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/01/2022] Open
Abstract
Clusterin, a protein chaperone found at high levels in physiological fluids, is expressed in nervous tissue and upregulated in several neurological diseases. To assess relevance to amyotrophic lateral sclerosis (ALS) and other motor neuron disorders, clusterin expression was evaluated using long-term dissociated cultures of murine spinal cord and SOD1(G93A) transgenic mice, a model of familial ALS. Motor neurons and astrocytes constitutively expressed nuclear and cytoplasmic forms of clusterin, and secreted clusterin accumulated in culture media. Although clusterin can be stress inducible, heat shock failed to increase levels in these neural cell compartments despite robust upregulation of stress-inducible Hsp70 (HspA1) in non-neuronal cells. In common with HSPs, clusterin was upregulated by treatment with the Hsp90 inhibitor, geldanamycin, and thus could contribute to the neuroprotection previously identified for such compounds in disease models. Clusterin expression was not altered in cultured motor neurons expressing SOD1(G93A) by gene transfer or in presymptomatic SOD1(G93A) transgenic mice; however, clusterin immunolabeling was weakly increased in lumbar spinal cord of overtly symptomatic mice. More striking, mutant SOD1 inclusions, a pathological hallmark, were strongly labeled by anti-clusterin. Since secreted, as well as intracellular, mutant SOD1 contributes to toxicity, the extracellular chaperoning property of clusterin could be important for folding and clearance of SOD1 and other misfolded proteins in the extracellular space. Evaluation of chaperone-based therapies should include evaluation of clusterin as well as HSPs, using experimental models that replicate the control mechanisms operant in the cells and tissue of interest.
Collapse
Affiliation(s)
- Samantha Zinkie
- Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St., Montreal, QC Canada H3A 2B4
| | - Benoit J. Gentil
- Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St., Montreal, QC Canada H3A 2B4
| | - Sandra Minotti
- Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St., Montreal, QC Canada H3A 2B4
| | - Heather D. Durham
- Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, 3801 University St., Montreal, QC Canada H3A 2B4
| |
Collapse
|
11
|
Hwang CS, Liu GT, Chang MDT, Liao IL, Chang HT. Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis. Neurobiol Dis 2013; 58:13-8. [PMID: 23639787 DOI: 10.1016/j.nbd.2013.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/20/2013] [Accepted: 04/09/2013] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complicate and progressive onset devastating neurodegenerative disease. Its pathogenic mechanisms remain unclear and there is no specific test for diagnosis. For years, researchers have been vigorously searching for biomarkers associated with ALS to assist clinical diagnosis and monitor disease progression. Some specific inflammatory processes in the central nervous system have been reported to participate in the pathogenesis of ALS. As high mobility group box 1 (HMGB1) is elevated in spinal cord tissues of patients with ALS, we hypothesized, therefore, that serum autoantibody against HMGB1 (HMGB1 autoAb) might represent an effective biomarker for ALS. Patients with ALS, Alzheimer's disease, Parkinson's disease, and healthy age-matched control subjects were recruited for this study. ALS group consisted of 61 subjects, the other groups each consisted of forty subjects. We generated a polyclonal antibody against HMGB1 and developed an ELISA-based methodology for screening serum samples of these subjects. All samples were coded for masked comparison. For statistic analyses, two-tailed Student's t-test, ANOVA, Bonferroni multiple comparison test, Spearman correlation, and receiver operating characteristic curve were applied. We discovered that the level of HMGB1 autoAb significantly increased in patients with ALS as compared with that of patients with Alzheimer's disease, Parkinson's disease, and healthy control subjects. The differences between all groups were robust even at the early stages of ALS progression. More importantly, higher HMGB1 autoAb level was found in more severe disease status with significant correlation. Our study demonstrates that serum HMGB1 autoAb may serve as a biomarker for the diagnosis of ALS and can be used to monitor disease progression.
Collapse
Affiliation(s)
- Chi-Shin Hwang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
12
|
Kim HG, Kim TM, Park G, Lee TH, Oh MS. Repeated Heat Exposure Impairs Nigrostriatal Dopaminergic Neurons in Mice. Biol Pharm Bull 2013; 36:1556-61. [DOI: 10.1248/bpb.b13-00268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University
| | - Tae-mi Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University
| | - Gunhyuk Park
- Department of Life and Nanopharmaceutical Sciences and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University
| | - Tae Hee Lee
- Department of Formulae Pharmacology, School of Oriental Medicine, Gachon University
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University
- Department of Life and Nanopharmaceutical Sciences and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University
| |
Collapse
|
13
|
Beckham JT, Wilmink GJ, Opalenik SR, Mackanos MA, Abraham AA, Takahashi K, Contag CH, Takahashi T, Jansen ED. Microarray analysis of cellular thermotolerance. Lasers Surg Med 2011; 42:752-65. [PMID: 21246580 DOI: 10.1002/lsm.20983] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Previously, we have shown that a 43°C pretreatment can provide thermotolerance to a following, more severe, thermal stress at 45°C. Using cells that lack the Hsp70 gene, we have also shown that there is still some thermotolerance in the absence of HSP70 protein. The purpose of this study was to determine which genes play a role in thermotolerance by measuring viability and proliferation of the cells at 2 days after heating. Specifically, we wanted to understand which pathways may be responsible for protecting cells in the absence of HSP70. STUDY DESIGN/MATERIALS AND METHODS Murine embryonic fibroblast cells with and without Hsp70 (MEF(+/+) and MEF(-/-), respectively) were exposed to a mild heat shock of 43°C for 30 minutes in a constant temperature water bath. After 3 hours of recovery, RNA was harvested from three heated samples alongside three untreated controls using a MicroRNeasy kit with DNAse treatment. RNA quality was verified by an Agilent Bioanalyzer. The RNA was then converted to cDNA and hybridized to Affymetrix gene expression DNA microarrays. The genes that showed a twofold change (up or down) relative to unheated controls were filtered by t-test for significance at a threshold of P < 0.05 using Genespring software. Data were verified by qRT-PCR. Genes were then categorized based upon their ontology. RESULTS While many genes were similarly upregulated, the main difference between cell types was an increase in transcription factors and nucleic acid binding proteins. Several genes known to be involved in the heat response were upregulated more than twofold (Hsp70, Hsp40, Hsp110, Hsp25, Atf3), however, another well studied heat responsive gene Hsp90 only increased by 1.5-fold under these conditions despite its role in thermotolerance. CONCLUSIONS The data herein presents genetic pathways which are candidates for further study of pretreatment protocols in laser irradiation.
Collapse
Affiliation(s)
- Josh T Beckham
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Aridon P, Geraci F, Turturici G, D’Amelio M, Savettieri G, Sconzo G. Protective Role of Heat Shock Proteins in Parkinson’s Disease. NEURODEGENER DIS 2011; 8:155-68. [DOI: 10.1159/000321548] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 09/16/2010] [Indexed: 01/04/2023] Open
|
15
|
Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, Chen J. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 2010; 92:184-211. [PMID: 20685377 DOI: 10.1016/j.pneurobio.2010.05.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/23/2010] [Accepted: 05/27/2010] [Indexed: 12/30/2022]
Abstract
Emerging evidence indicates that heat shock proteins (HSPs) are critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified roles in protein folding and chaperoning. HSPs are now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling. In addition, manipulation of HSPs has robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and has demanded the recent revamping of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we first discuss the HSP superfamilies in terms of protein structure, regulation, expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there we discuss known and proposed HSP impacts on major neurological disease states. This review article presents a three-part discussion on the array of HSP families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases.
Collapse
Affiliation(s)
- R Anne Stetler
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, United States.
| | | | | | | | | | | | | |
Collapse
|
16
|
Singhal SS, Yadav S, Drake K, Singhal J, Awasthi S. Hsf-1 and POB1 induce drug sensitivity and apoptosis by inhibiting Ralbp1. J Biol Chem 2008; 283:19714-29. [PMID: 18474607 PMCID: PMC2443664 DOI: 10.1074/jbc.m708703200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 05/01/2008] [Indexed: 11/06/2022] Open
Abstract
Hsf-1 (heat shock factor-1) is a transcription factor that is known to regulate cellular heat shock response through its binding with the multispecific transporter protein, Ralbp1. Results of present studies demonstrate that Hsf-1 causes specific and saturable inhibition of the transport activity of Ralbp1 and that the combination of Hsf-1 and POB1 causes nearly complete inhibition through specific bindings with Ralbp1. Augmentation of cellular levels of Hsf-1 and POB1 caused dramatic apoptosis in non-small cell lung cancer cell line H358 through Ralbp1 inhibition. These findings indicate a novel model for mutual regulation of Hsf-1 and Ralbp1 through Ralbp1-mediated sequestration of Hsf-1 in the cellular cytoskeleton and Hsf-1-mediated inhibition of the transport activity of membrane-bound Ralbp1.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699, USA
| | | | | | | | | |
Collapse
|
17
|
Yeyati PL, van Heyningen V. Incapacitating the evolutionary capacitor: Hsp90 modulation of disease. Curr Opin Genet Dev 2008; 18:264-72. [PMID: 18662780 DOI: 10.1016/j.gde.2008.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 07/02/2008] [Indexed: 11/24/2022]
Abstract
The nature-nurture argument surrounding the mechanisms of disease causation cannot be resolved, as the roles of genes and environment are inextricably entwined. Environmental fluctuation is clearly a major modifier of phenotype, as well as a promoter of evolutionary change. Both types of variability can be mediated by the stress response pathway, with the Hsp90 chaperone family as key components. Hsp90 has been hailed as a capacitor for evolutionary change, because partial inhibition of its functions can uncover cryptic mutations, leading to unexpected phenotypes that, although generally deleterious, will under rare new environmental conditions provide improved survival to the carrier of that variant. There is, therefore, a strong environmentally elicited link between the capacity to reveal hidden variation as human disease phenotype and as novel morphological forms for evolutionary selection.
Collapse
Affiliation(s)
- Patricia L Yeyati
- Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, UK.
| | | |
Collapse
|