1
|
Andersen CC, Kjær EKR, Vase CB, Mathiasen R, Debes NM, Jørgensen NR, Jennum PJ. Melatonin secretion across puberty: A systematic review and meta-analysis. Psychoneuroendocrinology 2025; 173:107281. [PMID: 39823958 DOI: 10.1016/j.psyneuen.2025.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Melatonin levels decrease with aging and substantially during puberty. Studies have presented distinct melatonin levels in patients with disorders related to their pubertal development compared to healthy controls. The discrepancy suggests that a decrease in melatonin concentrations seen during adolescence might be related to the physical, hormonal, and/or neuronal alterations that occur during the pubertal period. The aim of this review was to analyze the literature reporting melatonin levels in healthy children and adolescents during puberty, and to look for a potential relationship. METHODS The Medline and Embase databases were searched on November 28th 2024, including all articles published from 1974 to 2024. Moreover, in the studies eligible for full-text review, a "snowball" search based by backwards referencing was carried out to identify additional studies. This means going through the references of the eligible studies, to find potential other articles relevant for our review and met our inclusion criteria. Lastly, a meta-analysis on serum melatonin concentrations with increasing age and Tanner status was performed. RESULTS 21 studies were included. 12 studies found a decrease, 5 found no difference and 3 reported an increase in melatonin levels during pubertal advancement. One study could not report secretory alterations but was eligible for inclusion in the meta-analysis. This analysis revealed that Tanner stages were significantly associated with decreasing average as well as peak concentrations of melatonin. CONCLUSION The simultaneous occurrence of pubertal progression and chronological aging complicates potential reasons to the decrease observed. However, possible explanations could be related to sex hormones, physical properties of puberty or light exposure. To justify these explanations research in controlled conditions along with biochemical and clinical assessment of pubertal status is needed.
Collapse
Affiliation(s)
| | - Eva K R Kjær
- Pediatric Oncology Research Laboratory, Rigshospitalet, Denmark
| | | | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nanette M Debes
- Department of Pediatrics, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Abstract
Melatonin is a hormonal product of the pineal gland, a fact that is often forgotten. Instead it is promoted as a dietary supplement that will overcome insomnia, as an antioxidant and as a prescription only drug in most countries outside the United States of America and Canada. The aim of this review is to step back and highlight what we know about melatonin following its discovery 60 years ago. What is the role of endogenous melatonin; what does melatonin do to sleep, body temperature, circadian rhythms, the cardiovascular system, reproductive system, endocrine system and metabolism when administered to healthy subjects? When used as a drug/dietary supplement, what safety studies have been conducted? Can we really say melatonin is safe when it has not been systematically studied and many studies show interactions with a wide range of physiological processes? Finally the results of studies investigating the efficacy of melatonin as a drug to alleviate insomnia are critically evaluated. In summary, melatonin is an endogenous pineal gland hormone with specific physiological functions in animals and humans, with its primary role in humans to maintain synchrony of sleep with the day/night cycle. When administered as a drug it affects a wide range of physiological systems and has clinically important drug interactions. With respect to efficacy for treating sleep disorders, melatonin can advance the time of sleep onset but the effect is modest and variable. In children with neurodevelopmental disabilities melatonin appears to have the greatest impact on sleep onset but little effect on sleep efficiency.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Adverse Events Associated with Melatonin for the Treatment of Primary or Secondary Sleep Disorders: A Systematic Review. CNS Drugs 2019; 33:1167-1186. [PMID: 31722088 DOI: 10.1007/s40263-019-00680-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Melatonin is widely available either on prescription for the treatment of sleep disorders or as an over-the-counter dietary supplement. Melatonin has also recently been licensed in the UK for the short-term treatment of jetlag. Little is known about the potential for adverse events (AEs), in particular AEs resulting from long-term use. Concern has been raised over the possible risks of exposure in certain populations including pre-adolescent children and patients with epilepsy or asthma. OBJECTIVES The aim of this systematic review was to assess the evidence for AEs associated with short-term and longer-term melatonin treatment for sleep disorders. METHODS A literature search of the PubMed/Medline database and Google Scholar was conducted to identify randomised, placebo-controlled trials (RCTs) of exogenous melatonin administered for primary or secondary sleep disorders. Studies were included if they reported on both the types and frequencies of AEs. Studies of pre-term infants, studies of < 1 week in duration or involving single doses of melatonin and studies in languages other than English were excluded. Findings from open-label studies that raised concerns relating to AE reports in patients were also examined. Studies were assessed for quality of reporting against the Consolidated Standards of Reporting Trials (CONSORT) checklist and for risk of bias against the Cochrane Collaboration risk-of-bias criteria. RESULTS 37 RCTs met criteria for inclusion. Daily melatonin doses ranged from 0.15 mg to 12 mg. Subjects were monitored for up to 29 weeks, but most studies were of much shorter duration (4 weeks or less). The most frequently reported AEs were daytime sleepiness (1.66%), headache (0.74%), other sleep-related AEs (0.74%), dizziness (0.74%) and hypothermia (0.62%). Very few AEs considered to be serious or of clinical significance were reported. These included agitation, fatigue, mood swings, nightmares, skin irritation and palpitations. Most AEs either resolved spontaneously within a few days with no adjustment in melatonin, or immediately upon withdrawal of treatment. Melatonin was generally regarded as safe and well tolerated. Many studies predated publication of the CONSORT checklist and consequently did not conform closely to the guidelines. Similarly, only eight studies were judged 'good' overall with respect to the Cochrane risk-of-bias criteria. Of the remaining papers, 16 were considered 'fair' and 13 'poor' but publication of almost half of the papers preceded that of the earliest version of the guidelines. CONCLUSION Few, generally mild to moderate, AEs were associated with exogenous melatonin. No AEs that were life threatening or of major clinical significance were identified. The scarcity of evidence from long-term RCTs, however, limits the conclusions regarding the safety of continuous melatonin therapy over extended periods. There are insufficient robust data to allow a meaningful appraisal of concerns that melatonin may result in more clinically significant adverse effects in potentially at-risk populations. Future studies should be designed to comply with appropriate quality standards for RCTs, which most past studies have not.
Collapse
|
4
|
Tian X, Wang F, Zhang L, He C, Ji P, Wang J, Zhang Z, Lv D, Abulizi W, Wang X, Lian Z, Liu G. Beneficial Effects of Melatonin on the In Vitro Maturation of Sheep Oocytes and Its Relation to Melatonin Receptors. Int J Mol Sci 2017; 18:ijms18040834. [PMID: 28420163 PMCID: PMC5412418 DOI: 10.3390/ijms18040834] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022] Open
Abstract
(1) Background: The binding sites of melatonin, as a multifunctional molecule, have been identified in human, porcine, and bovine samples. However, the binding sites and mechanisms of melatonin have not been reported in sheep; (2) Methods: Cumulus–oocyte complexes (COCs) were cultured in TCM-199 supplemented with melatonin at concentrations of 0, 10−3, 10−5, 10−7, 10−9, and 10−11 M. Melatonin receptors (MT1 and MT2) were evaluated via immunofluorescence and Western blot. The effects of melatonin on cumulus cell expansion, nuclear maturation, embryo development, and related gene (GDF9, DNMT1, PTX3, HAS2, and EGFR) expression were investigated. The level of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were evaluated in oocytes and cumulus, respectively; (3) Results: Both MT1 and MT2 were expressed in oocytes, cumulus cells, and granulosa cells. Melatonin with a concentration of 10−7 M significantly enhanced the rates of nuclear maturation, cumulus cells expansion, cleavage, and blastocyst. Melatonin enhanced the expression of BMP15 in oocytes and of PTX3, HAS2, and EGFR in cumulus cells. Melatonin decreased the cAMP level of oocytes but enhanced the cGMP level in oocytes and cumulus cells; (4) Conclusion: The higher presence of MT1 in GV cumulus cells and the beneficial effects of melatonin indicated that its roles in regulating sheep oocyte maturation may be mediated mainly by the MT1 receptor.
Collapse
Affiliation(s)
- Xiuzhi Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Feng Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Changjiu He
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhenzhen Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Wusiman Abulizi
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Xuguang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Chuffa LGA, Amorim JPA, Teixeira GR, Mendes LO, Fioruci BA, Pinheiro PFF, Seiva FRF, Novelli ELB, Mello Júnior W, Martinez M, Martinez FE. Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant defenses during ovulation in the rat. Braz J Med Biol Res 2011; 44:217-23. [PMID: 21344135 DOI: 10.1590/s0100-879x2011007500018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/27/2011] [Indexed: 01/21/2023] Open
Abstract
Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g), were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight(-1)·day(-1)) both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05). Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day) and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL) towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2%) and estrous cycle remained extensive (26.7%), arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9%) and total antioxidant substances were enhanced within the ovaries (23.9%). Additionally, melatonin increased superoxide dismutase (21.3%), catalase (23.6%) and glutathione-reductase (14.8%) activities and the reducing power (10.2% GSH/GSSG ratio). We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.
Collapse
Affiliation(s)
- L G A Chuffa
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bentley GE, Tsutsui K, Kriegsfeld LJ. Recent studies of gonadotropin-inhibitory hormone (GnIH) in the mammalian hypothalamus, pituitary and gonads. Brain Res 2010; 1364:62-71. [PMID: 20934414 DOI: 10.1016/j.brainres.2010.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
Abstract
The hypothalamo-pituitary-gonadal (HPG) axis integrates internal and external cues via a balance of stimulatory and inhibitory neurochemical systems to time reproductive activity. The cumulative output of these positive and negative modulators drives secretion of gonadotropin-releasing hormone (GnRH), a neuropeptide that causes pituitary gonadotropin synthesis and secretion. Ten years ago, Tsutsui and colleagues discovered a peptide in quail hypothalamus that is capable of inhibiting gonadotropin secretion in cultured quail pituitary cells. Later studies by a variety of researchers examined the presence and functional role for the mammalian ortholog of GnIH. To date, GnIH exhibits a similar distribution and functional role in all mammals investigated, including humans. This overview summarizes the role of GnIH in modulation of mammalian reproductive physiology and suggests avenues for further study by those interested in the neuroendocrine control of reproductive physiology and sexual behavior.
Collapse
Affiliation(s)
- George E Bentley
- Laboratory of Reproductive Neuroendocrinology, Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720-3140, USA.
| | | | | |
Collapse
|
7
|
Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 2009; 92:328-43. [DOI: 10.1016/j.fertnstert.2008.05.016] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
|
8
|
Kripke DF, Kline LE, Shadan FF, Dawson A, Poceta JS, Elliott JA. Melatonin effects on luteinizing hormone in postmenopausal women: a pilot clinical trial NCT00288262. BMC WOMENS HEALTH 2006; 6:8. [PMID: 16704731 PMCID: PMC1481506 DOI: 10.1186/1472-6874-6-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/16/2006] [Indexed: 11/10/2022]
Abstract
BACKGROUND In many mammals, the duration of the nocturnal melatonin elevation regulates seasonal changes in reproductive hormones such as luteinizing hormone (LH). Melatonin's effects on human reproductive endocrinology are uncertain. It is thought that the same hypothalamic pulse generator may both trigger the pulsatile release of GnRH and LH and also cause hot flashes. Thus, if melatonin suppressed this pulse generator in postmenopausal women, it might moderate hot flashes. This clinical trial tested the hypothesis that melatonin could suppress LH and relieve hot flashes. METHODS Twenty postmenopausal women troubled by hot flashes underwent one week of baseline observation followed by 4 weeks of a randomized controlled trial of melatonin or matched placebo. The three randomized treatments were melatonin 0.5 mg 2.5-3 hours before bedtime, melatonin 0.5 mg upon morning awakening, or placebo capsules. Twelve of the women were admitted to the GCRC at baseline and at the end of randomized treatment for 24-hour sampling of blood for LH. Morning urine samples were collected twice weekly to measure LH excretion. Subjective responses measured throughout baseline and treatment included sleep and hot flash logs, the CESD and QIDS depression self-ratings, and the SAFTEE physical symptom inventory. RESULTS Urinary LH tended to increase from baseline to the end of treatment. Contrasts among the 3 randomized groups were statistically marginal, but there was relative suppression combining the groups given melatonin as contrasted to the placebo group (p < 0.01 one-tailed, Mann-Whitney U = 14). Similar but not significant results were seen in blood LH. There were no significant contrasts among groups in hot flashes, sleep, depression, or side-effect measures and no significant adverse effects of any sort. CONCLUSION The data are consistent with the hypothesis that melatonin suppresses LH in postmenopausal women. An effect related to the duration of nocturnal melatonin elevation is suggested. Effects of melatonin on reproductive endocrinology should be studied further in younger women and in men. Larger studies of melatonin effects on postmenopausal symptoms would be worthwhile.
Collapse
Affiliation(s)
- Daniel F Kripke
- Scripps Clinic Sleep Center, 10666 North Torrey Pines Road, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, California 92093-0667, USA
| | - Lawrence E Kline
- Scripps Clinic Sleep Center, 10666 North Torrey Pines Road, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Farhad F Shadan
- Scripps Clinic Sleep Center, 10666 North Torrey Pines Road, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Arthur Dawson
- Scripps Clinic Sleep Center, 10666 North Torrey Pines Road, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - J Steven Poceta
- Scripps Clinic Sleep Center, 10666 North Torrey Pines Road, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeffrey A Elliott
- Department of Psychiatry, University of California, San Diego, La Jolla, California 92093-0667, USA
| |
Collapse
|
9
|
Abstract
In addition to its antioxidative effects melatonin acts through specific nuclear and plasma membrane receptors. To date, two G-protein coupled melatonin membrane receptors, MT(1) and MT(2), have been cloned in mammals, while the newly purified MT(3) protein belongs to the family of quinone reductases. Screening studies have shown that various tissues of rodents express MT(1) and/or MT(2) melatonin receptors. In humans, melatonin receptors were also detected in several organs, including brain and retina, cardiovascular system, liver and gallbladder, intestine, kidney, immune cells, adipocytes, prostate and breast epithelial cells, ovary/granulosa cells, myometrium, and skin. This review summarizes the data published so far about MT(1) and MT(2) receptors in human tissues and human cells. Established and putative functions of melatonin after receptor activation as well as the clinical relevance of these findings will be discussed.
Collapse
MESH Headings
- Adipocytes/metabolism
- Animals
- Biliary Tract/metabolism
- Breast/metabolism
- Cardiovascular System/metabolism
- Central Nervous System/metabolism
- Female
- Gastrointestinal Tract/metabolism
- Genitalia, Female/metabolism
- Humans
- Immune System/metabolism
- Male
- Melatonin/metabolism
- Polymorphism, Genetic
- Prostate/metabolism
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction
- Skin/cytology
- Skin/metabolism
Collapse
Affiliation(s)
- C Ekmekcioglu
- Department of Physiology, Center for Physiology and Pathophysiology, Medical University Vienna, Schwarzpanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
10
|
El-Shenawy SM, Abdel-Salam OME, Baiuomy AR, El-Batran S, Arbid MS. Studies on the anti-inflammatory and anti-nociceptive effects of melatonin in the rat. Pharmacol Res 2002; 46:235-43. [PMID: 12220966 DOI: 10.1016/s1043-6618(02)00094-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study aimed to evaluate the anti-inflammatory and anti-nociceptive effects of melatonin in the rat. Acute inflammation was induced by sub-plantar injection of carrageenan (1%) in the rat hind paw. The rats received vehicle or drug 30 min before carrageenan administration and were evaluated for paw oedema at 1, 2, 3, and 4 h post-carrageenan. The induced inflammation and the formation of oedema were determined by measurement of the paw thickness. Nociception was tested by determining vocalization following electrical stimulation of the tail. Given intraperitoneally (i.p.) 30 min before carrageenan, melatonin caused significant and a dose-dependent reduction of hind paw swelling induced by carrageenan. At doses of 0.5 and 1 mg kg(-1), melatonin inhibited the carrageenan-induced oedema by 20.5 and 29.6% versus control values at 4 h post-carrageenan, respectively. Melatonin (0.5 and 1 mg kg(-1), i.p.) 30 min beforehand displayed anti-nociceptive effect in the electric stimulation of the rat tail test, increasing nociceptive thresholds to electrically-induced pain at 4 h post-treatment by 29.6 and 39.5%, respectively. Melatonin given simultaneously with the non-selective COX-1 and COX-2 inhibitor indomethacin (5 mg kg(-1), i.p.) 30 min prior to carrageenan, enhanced the anti-inflammatory effect of the latter in the carrageenan-induced paw oedema model by 23%. Melatonin (0.5 mg kg(-1), i.p.) increased the anti-nociceptive effect of indomethacin (5 mg kg(-1), i.p.). Meanwhile, the anti-inflammatory and anti-nociceptive effect of the highly selective COX-2 inhibitor rofecoxib (2.25 mg kg(-1), i.p.) was only slightly increased by melatonin administration at 0.5 mg kg(-1). Melatonin enhanced the anti-inflammatory effect of cysteamine (300 mg kg(-1), s.c.) in the carrageenan-induced paw oedema. Melatonin (20 and 40 microg per paw) given prior to carrageenan into the rat hind paw was devoid of anti-inflammatory effect. These results indicate that melatonin possesses anti-inflammatory and anti-nociceptive properties in the rat and enhance those of indomethacin. This effect is likely to be centrally mediated.
Collapse
Affiliation(s)
- Siham M El-Shenawy
- Department of Pharmacology, National Research Centre, Tahrir St, Dokki, Cairo, Egypt
| | | | | | | | | |
Collapse
|
11
|
Cole RJ, Smith JS, Alcalá YC, Elliott JA, Kripke DF. Bright-light mask treatment of delayed sleep phase syndrome. J Biol Rhythms 2002; 17:89-101. [PMID: 11837952 DOI: 10.1177/074873002129002366] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We treated delayed sleep phase syndrome (DSPS) with an illuminated mask that provides light through closed eyelids during sleep. Volunteers received either bright white light (2,700 lux, n = 28) or dim red light placebo (0.1 lux, n = 26) for 26 days at home. Mask lights were turned on (< 0.01 lux) 4 h before arising, ramped up for 1 h, and remained on at full brightness until arising. Volunteers also attempted to systematically advance sleep time, avoid naps, and avoid evening bright light. The light mask was well tolerated and produced little sleep disturbance. The acrophase of urinary 6-sulphatoxymelatonin (6-SMT) excretion advanced significantly from baseline in the bright group (p < 0.0006) and not in the dim group, but final phases were not significantly earlier in the bright group (ANCOVA ns). Bright treatment did produce significantly earlier phases, however, among volunteers whose baseline 6-SMT acrophase was later than the median of 0602 h (bright shift: 0732-0554 h, p < 0.0009; dim shift: 0746-0717 h, ns; ANCOVA p = 0.03). In this subgroup, sleep onset advanced significantly only with bright but not dim treatment (sleep onset shift: bright 0306-0145 h, p < 0.0002; dim 0229-0211 h, ns; ANCOVA p < .05). Despite equal expectations at baseline, participants rated bright treatment as more effective than dim treatment (p < 0.04). We conclude that bright-light mask treatment advances circadian phase and provides clinical benefit in DSPS individuals whose initial circadian delay is relatively severe.
Collapse
Affiliation(s)
- Roger J Cole
- Synchrony Applied Health Sciences, Del Mar, CA 92014-3805, USA.
| | | | | | | | | |
Collapse
|